×

A Prym variety with everywhere good reduction over \(\mathbb{Q}(\sqrt{61})\). (English) Zbl 07912234

Balakrishnan, Jennifer S. (ed.) et al., Arithmetic geometry, number theory, and computation. Cham: Springer. Simons Symp., 559-581 (2021).
Summary: We compute an equation for a modular abelian surface \(A\) that has everywhere good reduction over the quadratic field \(K = \mathbb{Q}(\sqrt{61})\) and that does not admit a principal polarization over \(K\).
For the entire collection see [Zbl 1515.11004].

MSC:

11Gxx Arithmetic algebraic geometry (Diophantine geometry)
11Yxx Computational number theory

References:

[1] V. A. Abrashkin, Galois modules of group schemes of period \(p\) over the ring of Witt vectors, translated from Izv. Akad. Nauk SSSR Ser. Mat. 51 (1987), no. 4, 691-736, 910, Math. USSR-Izv. 31 (1988), no. 1, 1-46. · Zbl 0674.14035
[2] Andrew R. Booker, Jeroen Sijsling, Andrew V. Sutherland, John Voight, and Dan Yasaki, A database of genus-2 curves over the rational numbers, LMS J. Comput. Math. 19 (Special Issue A) (2016), 235-254. · Zbl 1404.11090
[3] Armand Brumer and Kenneth Kramer, Certain abelian varieties bad at only one prime, Algebra Number Theory 12 (2018), no. 5, 1027-1071. · Zbl 1404.11083
[4] Armand Brumer, Ariel Pacetti, Cris Poor, Gonzalo Tornaría, John Voight, and David S. Yuen, On the paramodularity of typical abelian surfaces, Algebra & Number Theory 13 (2019), no. 5, 1145-1195. · Zbl 1466.11019
[5] Christina Birkenhake and Herbert Lange, Complex abelian varieties, volume 302 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], Springer-Verlag, Berlin, second edition, 2004. · Zbl 1056.14063
[6] Wieb Bosma, John Cannon, and Catherine Playoust, The Magma algebra system. I. The user language, J. Symbolic Comput. 24 (1997), vol. 3-4, 235-265. · Zbl 0898.68039
[7] Nils Bruin, Jeroen Sijsling, and Alexandre Zotine, Numerical computation of endomorphism rings of Jacobians, Proceedings of the Thirteenth Algorithmic Number Theory Symposium, Open Book Series 2 (2019), 155-171. · Zbl 1516.14060
[8] Henri Carayol, Formes modulaires et représentations galoisiennes à valeurs dans un anneau local complet, \(p\)-adic monodromy and the Birch and Swinnerton-Dyer conjecture (Boston, MA, 1991), Contemp. Math., vol. 165, Amer. Math. Soc., Providence, RI, 1994, 213-237. · Zbl 0812.11036
[9] W. Casselman, On abelian varieties with many endomorphisms and a conjecture of Shimura’s, Invent. Math. 12 (1971), 225-236. · Zbl 0213.47303
[10] Edgar Costa, Nicolas Mascot, Jeroen Sijsling, and John Voight, Rigorous computation of the endomorphism ring of a Jacobian, Math. Comp. 88 (2019), 1303-1339. · Zbl 1484.11135
[11] Lassina Dembélé, Abelian varieties with everywhere good reduction over certain real quadratic fields with small discriminant, 2019, preprint.
[12] Lassina Dembélé and Abhinav Kumar, Examples of abelian surfaces with everywhere good reduction, Math. Ann. 364 (2016), no. 3-4, 1365-1392. · Zbl 1410.11059
[13] Luis Dieulefait, Lucio Guerberoff, and Ariel Pacetti, Proving modularity for a given elliptic curve over an imaginary quadratic field, Math. Comp. 79 (2010), no. 270, 1145-1170. · Zbl 1227.11073
[14] Andreas-Stephan Elsenhans, Good models for cubic surfaces, preprint at https://math.uni-paderborn.de/fileadmin/mathematik/AG-Computeralgebra/Preprints-elsenhans /red_5.pdf.
[15] Gerd Faltings, Finiteness theorems for abelian varieties over number fields, translated from Invent. Math. 73 (1983), no. 3, 349-366; ibid. 75 (1984), no. 2, 381, Arithmetic geometry (Storrs, Conn., 1984), Springer, New York, 1986, 9-27. · Zbl 0588.14026
[16] Tom Fisher, How to trivialise an algebra, 2007, http://www.faculty.jacobs-university.de/mstoll/workshop2007/fisher2.pdf.
[17] Jean-Marc Fontaine, Il n’y a pas de variété abélienne sur \(\mathbb{Z} \), Invent. Math. 81 (1985), no. 3, 515-538. · Zbl 0612.14043
[18] Josep González, Jordi Guàrdia, and Victor Rotger, Abelian surfaces of \(GL_2\)-type as Jacobians of curves, Acta Arith. 116 (2005), no. 3, 263-287. · Zbl 1108.14032
[19] Jordi Guàrdia, Jacobian nullwerte and algebraic equations, J. Algebra 253 (2002), no. 1, 112-132. · Zbl 1054.14041
[20] Jeroen Hanselman, Gluing curves along their torsion, Ph.D. thesis, Universität Ulm, in progress, (2021) available at https://oparu.uni-ulm.de/xmlui/bitstream/handle/123456789/33412/Hanselman_Thesis.pdf
[21] Jeroen Hanselman and Jeroen Sijsling, gluing : Gluing curves of low genus along their torsion, https://github.com/JRSijsling/gluing.
[22] Ivanyos, Gábor, Lajos Rónyai, and Josef Schicho, Splitting full matrix algebras over algebraic number fields, J. Algebra 354 (2012), 211-223. · Zbl 1286.16041
[23] Nicholas M. Katz and Barry Mazur, Arithmetic moduli of elliptic curves, Annals Math. Studies, vol. 108, Princeton University Press, 1985. · Zbl 0576.14026
[24] Pınar Kılıçer, Hugo Labrande, Reynald Lercier, Christophe Ritzenthaler, Jeroen Sijsling, and Marco Streng, Plane quartics over \(\mathbb{Q}\) with complex multiplication, Acta Arith. 185 (2018), no. 2, 127-156. · Zbl 1409.14051
[25] Reynald Lercier, Christophe Ritzenthaler, and Jeroen Sijsling, Reconstructing plane quartics from their invariants, Discrete Comput. Geom. (2018), https://doi.org/10.1007/s00454-018-0047-4. · Zbl 1439.13020
[26] The LMFDB Collaboration, \( The L\)-functions and Modular Forms Database, http://www.lmfdb.org, 2019, [Online; accessed 30 July 2019].
[27] Pascal Molin and Christian Neurohr, Computing period matrices and the Abel-Jacobi map of superelliptic curves, Math. Comp. 88 (2019), no. 316, 847-888. · Zbl 1437.14060
[28] Christian Neurohr, Efficient integration on Riemann surfaces & applications, Ph.D. thesis, Carl-von-Ossietzky-Universität Oldenburg, 2018.
[29] Nicolas Mascot, Computing modular Galois representations, Rendiconti Circ. Mat. Palermo, vol. 62 no 3 (2013), 451-476. · Zbl 1339.11065
[30] Nicolas Mascot, Companion forms and explicit computation of \(\operatorname{PGL}_2\)-number fields with very little ramification, Journal of Algebra, vol. 509 (2018) 476-506. · Zbl 1422.11128
[31] Nicolas Mascot, Jeroen Sijsling, and John Voight, Prym calculation code, https://github.com/JRSijsling/prym.
[32] Elisabeth E. Pyle, Abelian varieties over \(\mathbb Q\) with large endomorphism algebras and their simple components over \(\overline{\mathbb Q} \), Modular curves and abelian varieties, Progr. Math., vol. 224, Birkhäuser, Basel, 2004, 189-239. · Zbl 1116.11040
[33] Kenneth A. Ribet, Twists of modular forms and endomorphisms of abelian varieties, Math. Ann. 253 (1980), no. 1, 143-162.
[34] René Schoof, Abelian varieties over cyclotomic fields with good reduction everywhere, Math. Ann. 325 (2003), no. 3, 413-448. · Zbl 1058.11038
[35] Goro Shimura, Introduction to the arithmetic theory of automorphic functions, Kanô Memorial Lectures, no. 1, Princeton University Press, Princeton, 1971. · Zbl 0221.10029
[36] Jeroen Sijsling, curve_reconstruction : Geometric and arithmetic reconstruction of curves from their period matrices, https://github.com/JRSijsling/curve_reconstruction.
[37] Richard Taylor, Representations of Galois groups associated to modular forms, Proc. ICM (Zürich, 1994), vol. 2, Birkhäuser, Basel, 1995, 435-442. · Zbl 0864.11022
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.