×

Optimal transport in full-waveform inversion: analysis and practice of the multidimensional Kantorovich-Rubinstein norm. (English) Zbl 1466.49041

Summary: In the last ten years, full-waveform inversion (FWI) has emerged as a robust and efficient high-resolution subsurface model-building tool for seismic imaging, with the unique ability to invert for complex models. FWI is based on the minimization of a cost function between observed and modelled data, the data space consisting in collections of time-series. Originally considering a least-squares (LSQ) cost function, the method suffered from high sensitivity to local minima and was therefore of poor efficiency in handling large time shifts between observed and modelled data events. To tackle this problem, a common practice is to start the inversion using the low temporal frequencies of the data and selecting specific data events called diving waves. Complementary to this, the use of other cost functions has been investigated. Among these, cost functions based on optimal transport (OT) appeared appealing to possibly handle large time shifts between observed and modelled data events. Several strategies inspired by OT have been proposed, taking into account the specificities of seismic data. Among them, the approach based on the Kantorovich-Rubinstein (KR) norm offers the possibility of the direct use of seismic data and an efficient numerical implementation allowing for a multidimensional (data coordinate space) application. We present here an analysis of the KR norm, discussing its theoretical and practical aspects. A key component of our analysis is the adjoint-source or data-space gradient of the cost function (converted into the model-space gradient within FWI). We highlight its piecewise linearity, analyze its frequency content and amplitude, and emphasize the benefit of having a multidimensional implementation. We give practical rules for setting the tuning parameters. Our set of synthetic and field data examples demonstrate the improvements brought by the use of the KR norm over LSQ FWI, and highlight the improvements brought by the multidimensional approach over the one-dimensional one.

MSC:

49Q22 Optimal transportation
94A08 Image processing (compression, reconstruction, etc.) in information and communication theory

Software:

UNLocBoX; CVXOPT

References:

[1] Ambrosio, L.; Gigli, N., A user’s guide to optimal transport, Modelling and Optimisation of Flows on Networks, vol 2062, 1-155 (2009), Berlin: Springer, Berlin · doi:10.1007/978-3-642-32160-3_1
[2] Ambrosio, L.; Gigli, N.; Savaré, G., Gradient Flows In Metric Spaces and in the Space of Probability Measures (2005), Basel: Birkhäuser, Basel · Zbl 1090.35002
[3] Andersen, M. S.; Dahl, J.; Vandenberghe, L., CVXOPT: a python package for convex optimization, version 1.1.5 (2013)
[4] Baek, H.; Calandra, H.; Demanet, L., Velocity estimation via registration-guided least-squares inversion, Geophysics, 79, R79-R89 (2014) · doi:10.1190/geo2013-0146.1
[5] Bertsekas, D., Constrained Optimization and Lagrange Multiplier Methods (1996), New York: Academic, New York
[6] Brenders, A. J.; Pratt, R. G., Waveform tomography of marine seismic data: what can limited offset offer?, 3024-3029 (2007)
[7] Brezis, H., Analyse fonctionnelle: Théorie et applications (2020), Paris: Dunod, Paris
[8] Bunks, C.; Saleck, F. M.; Zaleski, S.; Chavent, G., Multiscale seismic waveform inversion, Geophysics, 60, 1457-1473 (1995) · doi:10.1190/1.1443880
[9] Carotti, D.; Hermant, O.; Masclet, S.; Reinier, M.; Messud, J.; Sedova, A.; Lambaré, G., Optimal transport full-waveform inversion-applications (2020)
[10] Combettes, P. L.; Pesquet, J-C, Proximal splitting methods in signal processing, Springer Optimization and its Applications, vol 49, 185-212 (2011), New York: Springer, New York · Zbl 1242.90160
[11] Engquist, B.; Froese, B. D.; Yang, Y., Optimal transport for seismic full waveform inversion, Commun. Math. Sci., 14, 2309-2330 (2016) · Zbl 1353.49049 · doi:10.4310/cms.2016.v14.n8.a9
[12] Engquist, B.; Froese, B., Application of the Wasserstein metric to seismic signals, Commun. Math. Sci., 12, 979-988 (2014) · Zbl 1305.86006 · doi:10.4310/cms.2014.v12.n5.a7
[13] Hale, D., Dynamic warping of seismic images, Geophysics, 78, S105-S115 (2013) · doi:10.1190/geo2012-0327.1
[14] Hanin, L. G., Kantorovich-Rubinstein norm and its application in the theory of Lipschitz spaces, Proc. Am. Math. Soc., 115, 345-352 (1992) · Zbl 0768.46012 · doi:10.1090/s0002-9939-1992-1097344-5
[15] Hermant, O.; Aziz, A.; Warzocha, S.; Al Jahdhami, M., Imaging complex fault structures on-shore Oman using optimal transport full-waveform inversion (2020)
[16] Hermant, O.; Sedova, A.; Royle, G.; Retailleau, M.; Messud, J.; Lambaré, G.; Al Abri, S.; Al Jahdhami, M., Broadband FAZ land data: an opportunity for FWI (2019)
[17] Kantorovich, L. V.; Kantorovich, L. V., On the translocation of masses. On the translocation of masses, Dokl. Akad. Nauk SSSR. J. Math. Sci., 133, 1381-1382 (2006) · Zbl 1080.49507 · doi:10.1007/s10958-006-0049-2
[18] Kpadonou, F.; Messud, J.; Sedova, A.; Reinier, M., Optimal transport FWI with graph transform: analysis and proposal of a partial shift strategy (2021)
[19] Lailly, P., The seismic inverse problem as a sequence of before stack migrations, vol 83, 206-220 (1983)
[20] Lellmann, J.; Lorenz, D. A.; Schönlieb, C.; Valkonen, T., Imaging with Kantorovich-Rubinstein discrepancy, SIAM J. Imag. Sci., 7, 2833-2859 (2014) · Zbl 1308.49043 · doi:10.1137/140975528
[21] Luo, S.; Sava, P., A deconvolution-based objective function for wave-equation inversion, 2788-2792 (2011)
[22] Luo, Y.; Schuster, G. T., Wave‐equation traveltime inversion, Geophysics, 56, 645-653 (1991) · doi:10.1190/1.1443081
[23] Martin, G. S.; Wiley, R.; Marfurt, K. J., Marmousi2: an elastic upgrade for Marmousi, Lead. Edge, 25, 156-166 (2006) · doi:10.1190/1.2172306
[24] Messud, J.; Sedova, A., Multidimensional optimal transport for 3D FWI: demonstration on field data (2019)
[25] Métivier, L.; Allain, A.; Brossier, R.; Mérigot, Q.; Oudet, E.; Virieux, J., A graph-space approach to optimal transport for full-waveform inversion, 1158-1162 (2018)
[26] Métivier, L.; Brossier, R.; Mérigot, Q.; Oudet, E., A graph space optimal transport distance as a generalization of L^p-distances: application to a seismic imaging inverse problem, Inverse Problems, 35 (2019) · Zbl 1423.90145 · doi:10.1088/1361-6420/ab206f
[27] Métivier, L.; Brossier, R.; Mérigot, Q.; Oudet, E.; Virieux, J., Increasing the robustness and applicability of full-waveform inversion: an optimal transport distance strategy, Lead. Edge, 35, 1060-1067 (2016) · Zbl 1410.86018 · doi:10.1190/tle35121060.1
[28] Métivier, L.; Brossier, R.; Mérigot, Q.; Oudet, E.; Virieux, J., Measuring the misfit between seismograms using an optimal transport distance: application to full-waveform inversion, Geophys. J. Int., 205, 345-377 (2016) · Zbl 1410.86018 · doi:10.1093/gji/ggw014
[29] Métivier, L.; Brossier, R.; Mérigot, Q.; Oudet, E.; Virieux, J., An optimal transport approach for seismic tomography: application to 3D full-waveform inversion, Inverse Problems, 32 (2016) · Zbl 1410.86018 · doi:10.1088/0266-5611/32/11/115008
[30] Monge, G., Mémoire sur la théorie des déblais et des remblais, Histoire de l’Académie royale des sciences avec les mémoires de mathématique et de physique tirés des registres de cette Académie, 666-705 (1781)
[31] Operto, S.; Ravaut, C.; Improta, L.; Virieux, J.; Herrero, A.; Dell’Aversana, P., Quantitative imaging of complex structures from multifold wide aperture seismic data: a case study, Geophys. Prospect., 52, 625-651 (2004) · doi:10.1111/j.1365-2478.2004.00452.x
[32] Plessix, R-E, A review of the adjoint-state method for computing the gradient of a functional with geophysical applications, Geophys. J. Int., 167, 495-503 (2006) · doi:10.1111/j.1365-246x.2006.02978.x
[33] Plessix, R-É, 3D frequency-domain full-waveform inversion with an iterative solver, Geophysics, 74, WCC149-WCC157 (2009) · doi:10.1190/1.3211198
[34] Poncet, R.; Messud, J.; Bader, M.; Lambaré, G.; Viguier, G.; Hidalgo, C., FWI with optimal transport: a 3D implementation and an application on a field dataset (2018)
[35] Pratt, R. G., Inverse theory applied to multi-source cross-hole tomography. Part 2: Elastic wave-equation method, Geophys. Prospect., 38, 311-329 (1990) · doi:10.1111/j.1365-2478.1990.tb01847.x
[36] Pratt, R. G., Seismic waveform inversion in the frequency domain. Part 1: Theory and verification in a physical scale model, Geophysics, 64, 888-901 (1999) · doi:10.1190/1.1444597
[37] Rudin, W., Functional Analysis (1991), Paris: Dunod, Paris · Zbl 0867.46001
[38] Sedova, A.; Messud, J.; Prigent, H.; Masclet, S.; Royle, G.; Lambaré, G., Acoustic land full-waveform inversion on a broadband land dataset: the impact of optimal transport (2019)
[39] Shin, C.; Ha, W., A comparison between the behavior of objective functions for waveform inversion in the frequency and Laplace domains, Geophysics, 73, VE119-VE133 (2008) · doi:10.1190/1.2953978
[40] Sirgue, L.; Barkved, O.; Van Gestel, J.; Askim, O.; Kommedal, J., 3D waveform inversion on Valhall wide-azimuth OBC (2009)
[41] Sirgue, L.; Pratt, R. G., Efficient waveform inversion and imaging: a strategy for selecting temporal frequencies, Geophysics, 69, 231-248 (2004) · doi:10.1190/1.1649391
[42] Sun, B.; AlKhalifah, T., The application of an optimal transport to a preconditioned data matching function for robust waveform inversion, Geophysics, 84, R923-R945 (2019) · doi:10.1190/geo2018-0413.1
[43] Tang, Y.; Sun, B.; AlKhalifah, T., Wave-equation migration velocity analysis via the optimal-transport-based objective function, 3709-3713 (2020)
[44] Tarantola, A., Inversion of seismic reflection data in the acoustic approximation, Geophysics, 49, 1259-1266 (1984) · doi:10.1190/1.1441754
[45] Tarantola, A., Inverse Problem Theory and Methods for Model Parameters Estimation (2005), Amsterdam: Elsevier, Amsterdam · Zbl 1074.65013
[46] Van Leeuwen, T.; Mulder, W. A., A correlation-based misfit criterion for wave-equation traveltime tomography, Geophys. J. Int., 182, 1383-1394 (2010) · doi:10.1111/j.1365-246x.2010.04681.x
[47] Vigh, D.; Starr, E. W., 3D pre-stack plane wave full-waveform inversion, 1830-1834 (2007)
[48] Villani, C., Topics in Optimal Transportation (2003), Providence, RI: American Mathematical Society, Providence, RI · Zbl 1106.90001
[49] Villani, C., Optimal Transport: Old and New, vol 338 (2008), Berlin: Springer, Berlin · Zbl 1158.53036
[50] Virieux, J.; Operto, S., An overview of full-waveform inversion in exploration geophysics, Geophysics, 74, WCC1-WCC26 (2009) · doi:10.1190/1.3238367
[51] Wang, D.; Wang, P., Adaptive quadratic Wasserstein full-waveform inversion, 1300-1304 (2019)
[52] Wang, M.; Xie, Y.; Xu, W.; Xin, K. F.; Chuah, B. L.; Loh, F. C.; Manning, T.; Wolfarth, S., Dynamic-warping full-waveform inversion to overcome cycle skipping, 1273-1277 (2016)
[53] Warner, M., Anisotropic 3D full-waveform inversion, Geophysics, 78, R59-R80 (2013) · doi:10.1190/geo2012-0338.1
[54] Warner, M.; Guasch, L., Adaptive waveform inversion: theory, Geophysics, 81, R429-R445 (2016) · doi:10.1190/geo2015-0387.1
[55] Yang, Y.; Engquist, B., Analysis of optimal transport and related misfit functions in full-waveform inversion, Geophysics, 83, A7-A12 (2018) · doi:10.1190/geo2017-0264.1
[56] Yang, Y.; Engquist, B.; Sun, J.; Hamfeldt, B. F., Application of optimal transport and the quadratic Wasserstein metric to full-waveform inversion, Geophysics, 83, R43-R62 (2018) · doi:10.1190/geo2016-0663.1
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.