×

Subordination methods for free deconvolution. (English. French summary) Zbl 1477.46073

Summary: We derive subordination functions for free additive and free multiplicative deconvolutions under mild moment conditions. Our results include an algorithm to calculate these subordination functions, and thus the associated Cauchy transforms, for complex numbers with imaginary part greater than a parameter depending on the measure to deconvolve. The existence of these subordination functions on such domains reduces the problem of free deconvolutions to the problem of the classical additive deconvolution with a Cauchy distribution. Thus, our results, combined with known methods for the deconvolution with a Cauchy distribution, allow us to solve the free deconvolution problem. We also present extensions of these results to the case of operator-valued deconvolutions.

MSC:

46L54 Free probability and free operator algebras
60B20 Random matrices (probabilistic aspects)
15B52 Random matrices (algebraic aspects)
30D05 Functional equations in the complex plane, iteration and composition of analytic functions of one complex variable

Software:

QuEST; CVXOPT

References:

[1] M. Andersen, J. Dahl and L. Vandenberghe. CVXOPT: A Python package for convex optimization, 2013. Available at abel.ee.ucla.edu/cvxopt.
[2] O. Arizmendi, I. Nechita and C. Vargas. On the asymptotic distribution of block-modified random matrices. J. Math. Phys. 57 (2016) 015216. · Zbl 1332.81021 · doi:10.1063/1.4936925
[3] Z. Bai, J. Chen and J. Yao. On estimation of the population spectral distribution from a high-dimensional sample covariance matrix. Aust. N. Z. J. Stat. 52 (4) (2010) 423-437. · Zbl 1373.62245 · doi:10.1111/j.1467-842X.2010.00590.x
[4] J. Baik, G. Ben Arous and S. Péché. Phase transition of the largest eigenvalue for nonnull complex sample covariance matrices. Ann. Probab. 33 (5) (2005) 1643-1697. · Zbl 1086.15022 · doi:10.1214/009117905000000233
[5] S. Belinschi and H. Bercovici. A new approach to subordination results in free probability. J. Anal. Math. 101 (2007) 357-365. · Zbl 1142.46030 · doi:10.1007/s11854-007-0013-1
[6] S. Belinschi, T. Mai and R. Speicher. Analytic subordination theory of operator-valued free additive convolution and the solution of a general random matrix problem. J. Reine Angew. Math. 732 (2017) 21-53. · Zbl 1456.60013 · doi:10.1515/crelle-2014-0138
[7] S. Belinschi, R. Speicher, J. Treilhard and C. Vargas. Operator-valued free multiplicative convolution: Analytic subordination theory and applications to random matrix theory. Int. Math. Res. Not. 14 (2015) 5933-5958. · Zbl 1341.46037 · doi:10.1093/imrn/rnu114
[8] S. T. Belinschi, H. Bercovici, M. Capitaine and M. Février. Outliers in the spectrum of large deformed unitarily invariant models. Ann. Probab. 45 (6A) (2017) 3571-3625. · Zbl 1412.60014 · doi:10.1214/16-AOP1144
[9] S. T. Belinschi, M. Popa and V. Vinnikov. Infinite divisibility and a noncommutative Boolean-to-free Bercovici-Pata bijection. J. Funct. Anal. 262 (1) (2012) 94-123. · Zbl 1247.46054 · doi:10.1016/j.jfa.2011.09.006
[10] F. Benaych-Georges. Rectangular random matrices, related convolution. Probab. Theory Related Fields 144 (3-4) (2009) 471-515. · Zbl 1171.15022 · doi:10.1007/s00440-008-0152-z
[11] F. Benaych-Georges and M. Debbah. Free deconvolution: From theory to practice. In Paradigms for Biologically-Inspired Autonomic Networks and Services, 2010.
[12] H. Bercovici and D. Voiculescu. Free convolution of measures with unbounded support. Indiana Univ. Math. J. 42 (3) (1993) 733-773. · Zbl 0806.46070 · doi:10.1512/iumj.1993.42.42033
[13] P. Biane. Processes with free increments. Math. Z. 227 (1998) 143-174. · Zbl 0902.60060 · doi:10.1007/PL00004363
[14] S. Boyd and L. Vandenberghe. Convex Optimization. Cambridge University Press, Cambridge, 2004. · Zbl 1058.90049
[15] J. Bun, J. P. Bouchaud and M. Potters. Cleaning large correlation matrices: Tools from random matrix theory. Phys. Rep. 666 (2017) 1-109. · Zbl 1359.15031 · doi:10.1016/j.physrep.2016.10.005
[16] M. Capitaine and C. Donati-Martin. Strong asymptotic freeness for Wigner and Wishart matrices. Indiana Univ. Math. J. 56 (2) (2007) 767-803. · Zbl 1162.15013 · doi:10.1512/iumj.2007.56.2886
[17] R. Couillet and M. Debbah. Random Matrix Methods for Wireless Communications. Cambridge University Press, Cambridge, 2011. · Zbl 1252.94001
[18] A. Denjoy. Sur l’itération des fonctions analytiques. C. R. Acad. Sci. 182 (1926) 255-257. · JFM 52.0309.04
[19] C. J. Earle and R. S. Hamilton. A fixed point theorem for holomorphic mappings. In Proc. Sympos. Pure Math. XVI 61-65. American Mathematical Society, Providence, 1970. · Zbl 0205.14702
[20] N. El Karoui. Spectrum estimation for large dimensional covariance matrices using random matrix theory. Ann. Statist. 36 (6) (2008) 2757-2790. · Zbl 1168.62052 · doi:10.1214/07-AOS581
[21] C. W. Groetsch. The Theory of Tikhonov Regularization for Fredholm Equations. Boston Pitman Publication, 1984. · Zbl 0545.65034
[22] T. Hasebe. Monotone convolution and monotone infinite divisibility from complex analytic viewpoint. Infin. Dimens. Anal. Quantum Probab. Relat. Top. 13 (1) (2010) 111-131. · Zbl 1198.60014 · doi:10.1142/S0219025710003973
[23] V. Kargin. A concentration inequality and a local law for the sum of two random matrices. Probab. Theory Related Fields 154 (3-4) (2012) 677-702. · Zbl 1260.60015 · doi:10.1007/s00440-011-0381-4
[24] W. Kong and G. Valiant. Spectrum estimation from samples. Ann. Statist. 45 (5) (2017) 2218-2247. · Zbl 1443.62156 · doi:10.1214/16-AOS1525
[25] E. Lance. Hilbert \(C^*\)-Modules: A Toolkit for Operator Algebraists. London Mathematical Society Lecture Note Series. Cambridge University Press, Cambridge, 1995. · Zbl 0822.46080
[26] O. Ledoit and S. Péché. Eigenvectors of some large sample covariance matrix ensembles. Probab. Theory Related Fields 151 (1-2) (2011) 233-264. · Zbl 1229.60009
[27] O. Ledoit and M. Wolf. A well-conditioned estimator for large-dimensional covariancematrices. J. Multivariate Anal. 88 (2004) 365-411. · Zbl 1032.62050 · doi:10.1016/S0047-259X(03)00096-4
[28] O. Ledoit and M. Wolf. Nonlinear shrinkage estimation of large-dimensional covariance matrices. Ann. Statist. 40 (2) (2012) 1024-1060. · Zbl 1274.62371 · doi:10.1214/12-AOS989
[29] O. Ledoit and M. Wolf. Numerical implementation of the QuEST function. Comput. Statist. Data Anal. 115 (2017) 199-223. · Zbl 1466.62127 · doi:10.1016/j.csda.2017.06.004
[30] W. Li and J. Yao. A local moment estimator of the spectrum of a large dimensional covariance matrix. Statist. Sinica 24 (2014) 919-936. · Zbl 1285.62060
[31] H. Maassen. Addition of freely independent random variables. J. Funct. Anal. 106 (1992) 409-438. · Zbl 0784.46047 · doi:10.1016/0022-1236(92)90055-N
[32] V. Marchenko and L. Pastur. Distribution of eigenvalues of some sets of random matrices. Math. USSR, Sb. 1 (1967) 457-486. · Zbl 0162.22501 · doi:10.1070/SM1967v001n04ABEH001994
[33] X. Mestre. Improved estimation of eigenvalues and eigenvectors of covariance matrices using their sample estimates. IEEE Trans. Inf. Theory 54 (11) (2008) 5113-5129. · Zbl 1318.62191 · doi:10.1109/TIT.2008.929938
[34] J. Mingo and R. Speicher. Free Probability and Random Matrices. Fields Institute Monographs. Amer. Math. Soc., Providence, RI, 2017. · Zbl 1387.60005
[35] A. Nica, D. Shlyaktenko and R. Speicher. Operator-valued distributions I: Characterizations of freeness. Int. Math. Res. Not. 29 (2002) 1509-1538. · Zbl 1007.46052 · doi:10.1155/S1073792802201038
[36] A. Nica and R. Speicher. Lectures on the Combinatorics of Free Probability. LMS Lecture Note Series 335. Cambridge University Press, Cambridge, 2006. · Zbl 1133.60003
[37] J. Pennington, S. Schoenholz and S. Ganguli. The emergence of spectral universality in deep networks. In Proceedings of Machine Learning Research, 84 International Conference on Artificial Intelligence and Statistics, 2018.
[38] M. Popa and V. Vinnikov. Non-commutative functions and the non-commutative free Lévy-Hincin formula. Adv. Math. 236 (2013) 131-157. · Zbl 1270.46060 · doi:10.1016/j.aim.2012.12.013
[39] N. R. Rao, J. A. Mingo, R. Speicher and A. Edelman. Statistical eigen-inference from large Wishart matrices. Ann. Statist. 36 (6) (2008) 2850-2885. · Zbl 1168.62056 · doi:10.1214/07-AOS583
[40] Ø. Ryan and M. Debbah. Free deconvolution for signal processing applications. In Proceedings of IEEE International Symposium of Information Theory (ISIT’ 07) 1846-1850. Nice, France, 2007.
[41] Ø. Ryan and M. Debbah. Multiplicative free convolution and information-plus-Noise type matrices. Preprint. Available at arXiv:math/0702342.
[42] D. Shlyaktenko. Random Gaussian band matrices and freeness with amalgamation. Int. Math. Res. Not. 20 (1996) 1013-1025. · Zbl 0872.15018 · doi:10.1155/S1073792896000633
[43] R. Speicher. Multiplicative functions on the lattice of non-crossing partitions and free convolution. Math. Ann. 298 (1994) 611-628. · Zbl 0791.06010 · doi:10.1007/BF01459754
[44] R. Speicher. Combinatorial theory of the free product with amalgamation and operator-valued free probability theory. Mem. Amer. Math. Soc. 132 (627) (1998) x+88 pp. · Zbl 0935.46056
[45] W. Tarnowski, P. Warchol, S. Jastrzebski, J. Tabor and M. Nowak. Dynamical isometry is achieved in residual networks in a universal way for any activation function. In Proceedings of Machine Learning Research, 89 the 22nd International Conference on Artificial Intelligence and Statistics, 2019.
[46] D. Voiculescu. Symmetries of some reduced free product \(C^*\)-algebras. In Operator Algebras and Their Connections with Topology and Ergodic Theory (Busteni, 1983) 556-588. Lecture Notes in Math. 1132. Springer, Berlin, 1985. · Zbl 0618.46048
[47] D. Voiculescu. Addition of certain non-commutative random variables. J. Funct. Anal. 66 (1986) 323-346. · Zbl 0651.46063 · doi:10.1016/0022-1236(86)90062-5
[48] D. Voiculescu. Multiplication of certain non-commutative random variables. J. Oper. Theory 18 (1987) 223-235. · Zbl 0662.46069
[49] D. Voiculescu. Limit laws for random matrices and free products. Invent. Math. 104 (1991) 201-220. · Zbl 0736.60007 · doi:10.1007/BF01245072
[50] D. Voiculescu. The analogues of entropy and of Fisher’s information measure in free probability theory. I. Comm. Math. Phys. 155 (1) (1993) 71-92. · Zbl 0781.60006 · doi:10.1007/BF02100050
[51] D. Voiculescu. Operations on certain non-commutative operator-valued random variables. Astérisque 232 (1995) 243-275. · Zbl 0839.46060
[52] D. Voiculescu. The coalgebra of the free difference quotient and free probability. Int. Math. Res. Not. 2 (2000) 79-106. · Zbl 0952.46038 · doi:10.1155/S1073792800000064
[53] E. Wigner. On the distribution of the roots of certain symmetric matrices. Ann. of Math. 67 (1958) 325-327. · Zbl 0085.13203 · doi:10.2307/1970008
[54] J. D. Williams. Analytic function theory for operator-valued free probability. J. Reine Angew. Math. 729 (2017) 119-149. · Zbl 1381.46059
[55] J.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.