×

Learning Laplacian matrix from graph signals with sparse spectral representation. (English) Zbl 07626710

Summary: In this paper, we consider the problem of learning a graph structure from multivariate signals, known as graph signals. Such signals are multivariate observations carrying measurements corresponding to the nodes of an unknown graph, which we desire to infer. They are assumed to enjoy a sparse representation in the graph spectral domain, a feature which is known to carry information related to the cluster structure of a graph. The signals are also assumed to behave smoothly with respect to the underlying graph structure. For the graph learning problem, we propose a new optimization program to learn the Laplacian of this graph and provide two algorithms to solve it, called IGL-3SR and FGL-3SR. Based on a 3-step alternating procedure, both algorithms rely on standard minimization methods – such as manifold gradient descent or linear programming – and have lower complexity compared to state-of-the-art algorithms. While IGL-3SR ensures convergence, FGL-3SR acts as a relaxation and is significantly faster since its alternating process relies on multiple closed-form solutions. Both algorithms are evaluated on synthetic and real data. They are shown to perform as good or better than their competitors in terms of both numerical performance and scalability. Finally, we present a probabilistic interpretation of the proposed optimization program as a Factor Analysis Model.

MSC:

68T05 Learning and adaptive systems in artificial intelligence

References:

[1] A. Abraham, F. Pedregosa, M. Eickenberg, P. Gervais, A. Mueller, J. Kossaifi, A. Gramfort, B. Thirion, and G. Varoquaux. Machine learning for neuroimaging with scikit-learn. Frontiers in Neuroinformatics, 8:14, 2014.
[2] A. Abraham, M. P. Milham, A. Di Martino, R. C. Craddock, D. Samaras, B. Thirion, and G. Varoquaux. Deriving reproducible biomarkers from multi-site resting-state data: an autism-based example.NeuroImage, 147:736-745, 2017.
[3] P.-A. Absil, R. Mahony, and R. Sepulchre.Optimization algorithms on matrix manifolds. Princeton University Press, 2009. · Zbl 1147.65043
[4] A. Anis, A. Gadde, and A. Ortega. Towards a sampling theorem for signals on arbitrary graphs. InProceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing, pages 3864-3868, 2014.
[5] A. Argyriou, T. Evgeniou, and M. Pontil. Multi-task feature learning. InAdvances in Neural Information Processing Systems, pages 41-48, 2007. · Zbl 1470.68073
[6] R. Arora. On learning rotations. InAdvances in Neural Information Processing Systems, pages 55-63, 2009.
[7] O. Banerjee, L. E. Ghaoui, and A. d’Aspremont. Model selection through sparse maximum likelihood estimation for multivariate Gaussian or binary data.Journal of Machine Learning Research, 9:485-516, 2008. · Zbl 1225.68149
[8] P. Bellec, C. Chu, F. Chouinard-Decorte, Y. Benhajali, D. S. Margulies, and R. C. Craddock. The neuro bureau ADHD-200 preprocessed repository.Neuroimage, 144:275-286, 2017.
[9] S. Boyd and L. Vandenberghe.Convex optimization. Cambridge university press, 2004. · Zbl 1058.90049
[10] S. Boyd and L. Vandenberghe.Introduction to applied linear algebra: vectors, matrices, and least squares. Cambridge University Press, 2018. · Zbl 1406.15001
[11] C. A. Boyle, S. Boulet, L. A. Schieve, R. A. Cohen, S. J. Blumberg, M. Yeargin-Allsopp, S. Visser, and M. D. Kogan. Trends in the prevalence of developmental disabilities in US children, 1997-2008.Pediatrics, 127(6):1034-1042, 2011.
[12] S. Bubeck. Convex optimization: Algorithms and complexity.Foundations and TrendsR in Machine Learning, 8(3-4):231-357, 2015. · Zbl 1365.90196
[13] S. Chen, A. Sandryhaila, and J. Kovaˇcevi´c. Sampling theory for graph signals. InProceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing, pages 3392-3396, 2015.
[14] S. P. Chepuri, S. Liu, G. Leus, and A. O. Hero. Learning sparse graphs under smoothness prior. InProceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing, pages 6508-6512, 2017.
[15] F. R. K. Chung and F. C. Graham.Spectral graph theory. Number 92. American Mathematical Society, 1997.
[16] A. K. Cline and I. S. Dhillon. Computation of the singular value decomposition. 2006.
[17] K. Dadi, M. Rahim, A. Abraham, D. Chyzhyk, M. Milham, B. Thirion, G. Varoquaux, Alzheimer’s Disease Neuroimaging Initiative, et al. Benchmarking functional connectomebased predictive models for resting-state fMRI.Neuroimage, 192:115-134, 2019.
[18] S. I. Daitch, J. A. Kelner, and D. A. Spielman. Fitting a graph to vector data. InProceedings of the International Conference on Machine Learning, pages 201-208, 2009.
[19] J. S. Damoiseaux, S. Rombouts, F. Barkhof, P. Scheltens, C. J. Stam, S. M. Smith, and C. F. Beckmann. Consistent resting-state networks across healthy subjects.Proceedings of the national academy of sciences, 103(37):13848-13853, 2006.
[20] Jan De Leeuw. Block-relaxation algorithms in statistics. InInformation systems and data analysis, pages 308-324. Springer, 1994. · Zbl 0829.65144
[21] S. Diamond and S. Boyd.Cvxpy: A python-embedded modeling language for convex optimization.Journal of Machine Learning Research, 17:1-5, 2016. · Zbl 1360.90008
[22] P. M. Djuric and C. Richard, editors.Cooperative and Graph Signal Processing - Principles and Applications. Elsevier, 2018.
[23] X. Dong, D. Thanou, P. Frossard, and P. Vandergheynst. Learning Laplacian matrix in smooth graph signal representations.IEEE Transactions on Signal Processing, 64(23): 6160-6173, 2016. · Zbl 1414.94172
[24] X. Dong, D. Thanou, M. Rabbat, and P. Frossard. Learning graphs from data: A signal representation perspective.preprint arXiv:1806.00848, 2018.
[25] N. Du, L. Song, M. Yuan, and A. J. Smola. Learning networks of heterogeneous influence. InAdvances in Neural Information Processing Systems, pages 2780-2788, 2012.
[26] J. Duchi, S. Shalev-Shwartz, Y. Singer, and T. Chandra. Efficient projections onto the l 1-ball for learning in high dimensions. InProceedings of the International Conference on Machine Learning, pages 272-279, 2008.
[27] A. Edelman, T. A. Arias, and S. T. Smith. The geometry of algorithms with orthogonality constraints.SIAM Journal on Matrix Analysis and Applications, 20(2):303-353, 1998. · Zbl 0928.65050
[28] H. E. Egilmez, E. Pavez, and A. Ortega. Graph learning from data under structural and Laplacian constraints.preprint arXiv:1611.05181, 2016. · Zbl 1415.68174
[29] J. Friedman, T. Hastie, and R. Tibshirani. Sparse inverse covariance estimation with the graphical lasso.Biostatistics, 9(3):432-441, 2008. · Zbl 1143.62076
[30] M. Gomez-Rodriguez, L. Song, H. Daneshmand, and B. Sch¨olkopf. Estimating diffusion networks: Recovery conditions, sample complexity & soft-thresholding algorithm.Journal of Machine Learning Research, 17:3092-3120, 2016.
[31] Aric Hagberg, Pieter Swart, and Daniel S Chult. Exploring network structure, dynamics, and function using networkx. Technical report, Los Alamos National Lab.(LANL), Los Alamos, NM (United States), 2008.
[32] M. Hecker, S. Lambeck, S. Toepfer, E. Van Someren, and R. Guthke. Gene regulatory network inference: data integration in dynamic models — A review.Biosystems, 96(1): 86-103, 2009.
[33] A. Hoorfar and M. Hassani. Approximation of the lambert w function and hyperpower function.Research report collection, 10(2), 2007. · Zbl 1163.33326
[34] A. Hyv¨arinen and E. Oja. Independent component analysis: algorithms and applications. Neural networks, 13(4-5):411-430, 2000.
[35] V. Kalofolias. How to learn a graph from smooth signals. InProceedings of the Conference on Artificial Intelligence and Statistics, pages 920-929, 2016.
[36] D. Koller, N. Friedman, and F. Bach.Probabilistic graphical models: principles and techniques. MIT press, 2009. · Zbl 1183.68483
[37] Sandeep Kumar, Jiaxi Ying, Jos’e Vin’icius de Cardoso, Daniel P Palomar, et al. Structured graph learning via laplacian spectral constraints. InAdvances in Neural Information Processing Systems, 2019.
[38] B. Le Bars, P. Humbert, L. Oudre, and A. Kalogeratos. Learning Laplacian matrix from bandlimited graph signals. InIEEE International Conference on Acoustics, Speech and Signal Processing, pages 2937-2941, 2019.
[39] Batiste Le Bars, Pierre Humbert, Argyris Kalogeratos, and Nicolas Vayatis. Learning the piece-wise constant graph structure of a varying ising model. InInternational Conference on Machine Learning, pages 675-684. PMLR, 2020.
[40] Kuzma Leshakov. F3: Fast forest fire graph generation. InCompanion to the first International Conference on the Art, Science and Engineering of Programming, pages 1-3, 2017.
[41] Jure Leskovec and Rok Sosiˇc. Snap: A general-purpose network analysis and graph-mining library.ACM Transactions on Intelligent Systems and Technology (TIST), 8(1):1-20, 2016.
[42] Jure Leskovec, Jon Kleinberg, and Christos Faloutsos. Graphs over time: densification laws, shrinking diameters and possible explanations. InProceedings of the eleventh ACM international conference on Knowledge discovery in data mining (SIGKDD), pages 177- 187, 2005.
[43] Jure Leskovec, Jon Kleinberg, and Christos Faloutsos. Graph evolution: Densification and shrinking diameters.ACM transactions on Knowledge Discovery from Data (TKDD), 1 (1):2-es, 2007.
[44] Jure Leskovec, Deepayan Chakrabarti, Jon Kleinberg, Christos Faloutsos, and Zoubin Ghahramani. Kronecker graphs: an approach to modeling networks.Journal of Machine Learning Research, 11(2), 2010. · Zbl 1242.05256
[45] P.-E. Maing´e. Strong convergence of projected subgradient methods for nonsmooth and nonstrictly convex minimization.Set-Valued Analysis, 16(7-8):899-912, 2008. · Zbl 1156.90426
[46] A. G. Marques, S. Segarra, G. Leus, and A. Ribeiro.Sampling of graph signals with successive local aggregations.IEEE Transactions on Signal Processing, 64(7):1832-1843, 2016. · Zbl 1414.94402
[47] G. Meyer.Geometric optimization algorithms for linear regression on fixed-rank matrices. PhD thesis, 2011.
[48] S.K. Narang, A. Gadde, and A. Ortega. Signal processing techniques for interpolation in graph structured data. InProceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing, pages 5445-5449, 2013.
[49] A.Y. Ng, M.I. Jordan, and Y. Weiss. On spectral clustering: Analysis and an algorithm. In Advances in Neural Information Processing Systems, pages 849-856, 2001.
[50] Feiping Nie, Xiaoqian Wang, Michael I Jordan, and Heng Huang. The constrained laplacian rank algorithm for graph-based clustering. InAAAI Conference on Artificial Intelligence, 2016.
[51] B. Pasdeloup, V. Gripon, G. Mercier, D. Pastor, and M. G. Rabbat. Characterization and inference of graph diffusion processes from observations of stationary signals.IEEE Transactions on Signal and Information Processing over Networks, 2017.
[52] S. Ravishankar and Y. Bresler. Learning sparsifying transforms.IEEE Transactions on Signal Processing, 61(5):1072-1086, 2012. · Zbl 1393.94409
[53] Meisam Razaviyayn, Mingyi Hong, and Zhi-Quan Luo. A unified convergence analysis of block successive minimization methods for nonsmooth optimization.SIAM Journal on Optimization, 23(2):1126-1153, 2013. · Zbl 1273.90123
[54] M. G. Rodriguez, D. Balduzzi, and B. Sch¨olkopf. Uncovering the temporal dynamics of diffusion networks. InProceedings of the International Conference on Machine Learning, pages 561-568, 2011.
[55] S. Sardellitti, S. Barbarossa, and P. Di Lorenzo. Graph topology inference based on sparsifying transform learning.IEEE Transactions on Signal Processing, 67(7):1712-1727, 2019. · Zbl 1458.94333
[56] B. Sen, N. C Borle, R. Greiner, and M. R. G. Brown. A general prediction model for the detection of ADHD and autism using structural and functional MRI.PloS one, 13(4): e0194856, 2018.
[57] U. Shalit and G. Chechik. Coordinate-descent for learning orthogonal matrices through givens rotations. InInternational Conference on Machine Learning, pages 548-556, 2014.
[58] D. I. Shuman, S. K. Narang, P. Frossard, A. Ortega, and P. Vandergheynst. The emerging field of signal processing on graphs: Extending high-dimensional data analysis to networks and other irregular domains.Signal Processing Magazine, 30(3):83-98, 2013.
[59] S. M. Smith, P. T. Fox, K. L. Miller, D. C. Glahn, P. M. Fox, C. E. Mackay, N. Filippini, K. E. Watkins, R. Toro, A. R. Laird, et al. Correspondence of the brain’s functional architecture during activation and rest.Proceedings of the National Academy of Sciences, 106(31):13040-13045, 2009.
[60] Christian L Staudt, Aleksejs Sazonovs, and Henning Meyerhenke. Networkit: A tool suite for large-scale complex network analysis.Network Science, 4(4):508-530, 2016.
[61] D. A. Tarzanagh and G. Michailidis. Estimation of graphical models through structured norm minimization.Journal of Machine Learning Research, 18, 2018. · Zbl 1473.62200
[62] D. Thanou, X. Dong, D. Kressner, and P. Frossard. Learning heat diffusion graphs.IEEE Transactions on Signal and Information Processing over Networks, 3(3):484-499, 2017.
[63] J. Townsend, N. Koep, and S. Weichwald. Pymanopt: A python toolbox for optimization on manifolds using automatic differentiation.Journal of Machine Learning Research, 17: 1-5, 2016. · Zbl 1416.65580
[64] Paul Tseng. Convergence of a block coordinate descent method for nondifferentiable minimization.Journal of optimization theory and applications, 109(3):475-494, 2001. · Zbl 1006.65062
[65] D. Valsesia, G. Fracastoro, and E. Magli. Sampling of graph signals via randomized local aggregations.preprint arXiv:1804.06182, 2018. · Zbl 07586469
[66] L. Vandenberghe. The CVXOPT linear and quadratic cone program solvers. 2010.
[67] G. Varoquaux, A. Gramfort, F. Pedregosa, V. Michel, and B. Thirion. Multi-subject dictionary learning to segment an atlas of brain spontaneous activity. InProceedings of the Biennial International Conference on Information Processing in Medical Imaging, pages 562-573. Springer, 2011.
[68] U. Von Luxburg. A tutorial on spectral clustering.Statistics and computing, 17(4):395-416, 2007.
[69] J. Wang and M. Kolar. Inference for high-dimensional exponential family graphical models. InArtificial Intelligence and Statistics, pages 1042-1050, 2016.
[70] John N Weinstein, Eric A Collisson, Gordon B Mills, Kenna R Mills Shaw, Brad A Ozenberger, Kyle Ellrott, Ilya Shmulevich, Chris Sander, Joshua M Stuart, Cancer Genome Atlas Research Network, et al. The cancer genome atlas pan-cancer analysis project. Nature genetics, 45(10):1113, 2013.
[71] L. H. William, Y. Rex, and J. Leskovec. Representation learning on graphs: Methods and applications.preprint arXiv:1709.05584, 2017.
[72] E. Yang, P. Ravikumar, G. I. Allen, and Z. Liu. Graphical models via univariate exponential family distributions.Journal of Machine Learning Research, 16:3813-3847, 2015. · Zbl 1351.62111
[73] M. Yuan and Y. Lin. Model selection and estimation in regression with grouped variables. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 68(1):49-67, 2006. · Zbl 1141.62030
[74] H. Zou, T. Hastie, and R. Tibshirani. Sparse principal component analysis.Journal of Computational and Graphical Statistics, 15(2):265-286, 2006.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.