×

Incorporation of flexible objectives and time-linked simulation with flux balance analysis. (English) Zbl 1338.92039

Summary: We present two modifications of the flux balance analysis (FBA) metabolic modeling framework which relax implicit assumptions of the biomass reaction. Our flexible flux balance analysis (flexFBA) objective removes the fixed proportion between reactants, and can therefore produce a subset of biomass reactants. Our time-linked flux balance analysis (tFBA) simulation removes the fixed proportion between reactants and byproducts, and can therefore describe transitions between metabolic steady states. Used together, flexFBA and tFBA model a time scale shorter than the regulatory and growth steady state encoded by the biomass reaction. This combined short-time FBA method is intended for integrated modeling applications to enable detailed and dynamic depictions of microbial physiology such as whole-cell modeling. For example, when modeling Escherichia coli, it avoids artifacts caused by low-copy-number enzymes in single-cell models with kinetic bounds. Even outside integrated modeling contexts, the detailed predictions of flexFBA and tFBA complement existing FBA techniques. We show detailed metabolite production of in silico knockouts used to identify when correct essentiality predictions are made for the wrong reason.

MSC:

92C40 Biochemistry, molecular biology

Software:

CVXOPT

References:

[3] Birch, E. W.; Ruggero, N. A.; Covert, M. W., Determining host metabolic limitations on viral replication via integrated modeling and experimental perturbation, PLoS Comput. Biol., 8, 10, e1002746 (2012)
[5] Burgard, A. P.; Maranas, C. D., Optimization-based framework for inferring and testing hypothesized metabolic objective functions, Biotechnol. Bioeng., 82, 6, 670-677 (2003)
[6] Covert, M. W.; Palsson, B.Ø., Transcriptional regulation in constraints-based metabolic models of Escherichia coli, J. Biol. Chem., 277, 31, 28058-28064 (2002)
[7] Covert, M. W.; Schilling, C. H.; Famili, I.; Edwards, J. S.; Goryanin, I. I.; Selkov, E.; Palsson, B. O., Metabolic modeling of microbial strains in silico, Trends Biochem. Sci., 26, 3, 179-186 (2001)
[8] Covert, M. W.; Knight, E. M.; Reed, J. L.; Herrgard, M. J.; Palsson, B. O., Integrating high-throughput and computational data elucidates bacterial networks, Nature, 429, 6987, 92-96 (2004)
[9] Covert, M. W.; Xiao, N.; Chen, T. J.; Karr, J. R., Integrating metabolic, transcriptional regulatory and signal transduction models in Escherichia coli, Bioinformatics, 24, 18, 2044-2050 (2008)
[10] Edwards, J. S.; Palsson, B. O., Metabolic flux balance analysis and the in silico analysis of Escherichia coli K-12 gene deletions, BMC Bioinform., 1, 1 (2000)
[11] Feist, A. M.; Palsson, B. O., The biomass objective function, Curr. Opin. Microbiol., 13, 3, 344-349 (2010)
[12] Feist, A. M.; Henry, C. S.; Reed, J. L.; Krummenacker, M.; Joyce, A. R.; Karp, P. D.; Broadbelt, L. J.; Hatzimanikatis, V.; Palsson, B.Ø., A genome-scale metabolic reconstruction for Escherichia coli K-12 MG1655 that accounts for 1260 ORFs and thermodynamic information, Mol. Syst. Biol., 3, 121 (2007)
[13] Goldstein, A.; Goldstein, D. B.; Brown, B. J.; Chou, S.-C., Amino acid starvation in an Escherichia coli auxotroph. I. Effects on protein and nucleic acid synthesis and on cell division, Biochim. Biophys. Acta, 36, 163-172 (1959)
[15] Goss, W. A.; Deitz, W. H.; Cook, T. M., Mechanism of action of naladixic acid on Escherichia coli, J. Bacteriol., 88, 1112-1118 (1964)
[16] Harcombe, W. R.; Delaney, N. F.; Leiby, N.; Klitgord, N.; Marx, C. J., The ability of flux balance analysis to predict evolution of central metabolism scales with the initial distance to the optimum, PLoS Comput. Biol., 9, 6, e1003091 (2013)
[17] Heavner, B. D.; Smallbone, K.; Barker, B.; Mendes, P.; Walker, L. P., Yeast 5 - an expanded reconstruction of the Saccharomyces cerevisiae metabolic network, BMC Syst. Biol., 6, 1, 55 (2012)
[18] Imielinski, M.; Belta, C.; Halasz, A.; Rubin, H., Investigating metabolite essentiality through genome-scale analysis of Escherichia coli production capabilities, Bioinformatics, 21, 9, 2008-2016 (2005)
[19] Jackowski, S.; Rock, C. O., Regulation of coenzyme A biosynthesis, J. Bacteriol., 148, 3, 926-932 (1981)
[20] Karr, J. R.; Sanghvi, J. C.; Macklin, D. N.; Gutschow, M. V.; Jacobs, J. M.; Bolival, B.; Assad-Garcia, N.; Glass, J. I.; Covert, M. W., A whole-cell computational model predicts phenotype from genotype, Cell, 150, 2, 389-401 (2012)
[21] Lidstrom, M. E.; Konopka, M. C., The role of physiological heterogeneity in microbial population behavior, Nat. Chem. Biol., 6, 10, 705-712 (2010)
[22] Mahadevan, R. R.; Edwards, J. S.J.; Doyle, F. J.F., Dynamic flux balance analysis of diauxic growth in Escherichia coli, Biophys. J., 83, 3, 1331-1340 (2002)
[23] Mileykovskaya, E.; Ryan, A. C.; Mo, X.; Lin, C.-C.; Khalaf, K. I.; Dowhan, W.; Garrett, T. A., Phosphatidic acid and N-acylphosphatidylethanolamine form membrane domains in Escherichia coli mutant lacking cardiolipin and phosphatidylglycerol, J. Biol. Chem., 284, 5, 2990-3000 (2009)
[24] Nookaew, I.; Jewett, M. C.; Meechai, A.; Thammarongtham, C.; Laoteng, K.; Cheevadhanarak, S.; Nielsen, J.; Bhumiratana, S., The genome-scale metabolic model iIN800 of Saccharomyces cerevisiae and its validationa scaffold to query lipid metabolism, BMC Syst. Biol., 2, 1, 71 (2008)
[25] Ohashi, Y.; Hirayama, A.; Ishikawa, T.; Nakamura, S.; Shimizu, K.; Ueno, Y.; Tomita, M.; Soga, T., Depiction of metabolome changes in histidine-starved Escherichia coli by CE-TOFMS, Mol. BioSyst., 4, 2, 135 (2008)
[26] Raman, K.; Chandra, N., Flux balance analysis of biological systemsapplications and challenges, Brief. Bioinform., 10, 4, 435-449 (2009)
[27] Reed, J. L., Shrinking the metabolic solution space using experimental datasets, PLoS Comput. Biol., 8, 8, e1002662 (2012)
[28] Schuetz, R.; Kuepfer, L.; Sauer, U., Systematic evaluation of objective functions for predicting intracellular fluxes in Escherichia coli, Mol. Syst. Biol., 3, 119 (2007)
[29] Segrè, D.; Vitkup, D.; Church, G. M., Analysis of optimality in natural and perturbed metabolic networks, Proc. Natl. Acad. Sci. USA, 99, 23, 15112-15117 (2002)
[30] Sra, S.; Nowozin, S.; Wright, S. J., Optimization for Machine Learning (2012), MIT Press
[31] Tabor, C. W.; Tabor, H., Polyamines in microorganisms, Microbiol. Rev., 49, 1, 81 (1985)
[32] Taniguchi, Y.; Choi, P. J.; Li, G. W.; Chen, H.; Babu, M.; Hearn, J.; Emili, A.; Xie, X. S., Quantifying E. coli proteome and transcriptome with single-molecule sensitivity in single cells, Science, 329, 5991, 533-538 (2010)
[33] Varma, A.; Palsson, B. O., Metabolic capabilities of Escherichia coli. I. Synthesis of biosynthetic precursors and cofactors, J. Theor. Biol., 165, 4, 477-502 (1993)
[34] Wei, Y.; Newman, E. B., Studies on the role of the metK gene product of Escherichia coli K-12, Mol. Microbiol., 43, 6, 1651-1656 (2002)
[36] Zomorrodi, A. R.; Suthers, P. F.; Ranganathan, S.; Maranas, C. D., Mathematical optimization applications in metabolic networks, Metab. Eng., 14, 6, 672-686 (2012)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.