×

Dynamical inflation stimulated cogenesis. (English) Zbl 07837455

Summary: We propose a minimal setup that realises dynamical inflection point inflation, and, using the same field content, generates neutrino masses, a baryon asymmetry of the universe, and dark matter. A dark \(\mathrm{SU}(2)_D\) gauge sector with a dark scalar doublet playing the role of inflaton is considered along with several doublet and singlet fermions sufficient to realise multiple inflection points in the inflaton potential. The singlet fermions couple to SM leptons and generate neutrino masses via the inverse seesaw mechanism. Those fermions also decay asymmetrically and out of equilibrium, generating a baryon asymmetry via leptogenesis. Some of the fermion doublets are dark matter, and they are produced via inflaton decay and freeze-in annihilation of the same fermions that generate the lepton asymmetry. Reheating, leptogenesis, and dark matter are all at the TeV scale.

MSC:

81-XX Quantum theory

Software:

MARTY

References:

[1] Planck collaboration, Planck 2018 results. VI. Cosmological parameters, Astron. Astrophys.641 (2020) A6 [Erratum ibid.652 (2021) C4] [arXiv:1807.06209] [INSPIRE].
[2] Planck collaboration, Planck 2018 results. X. Constraints on inflation, Astron. Astrophys.641 (2020) A10 [arXiv:1807.06211] [INSPIRE].
[3] A.H. Guth, The inflationary universe: a possible solution to the horizon and flatness problems, Phys. Rev. D23 (1981) 347 [INSPIRE]. · Zbl 1371.83202
[4] A.A. Starobinsky, A new type of isotropic cosmological models without singularity, Phys. Lett. B91 (1980) 99 [INSPIRE]. · Zbl 1371.83222
[5] Linde, AD, A new inflationary universe scenario: a possible solution of the horizon, flatness, homogeneity, isotropy and primordial monopole problems, Phys. Lett. B, 108, 389 (1982) · doi:10.1016/0370-2693(82)91219-9
[6] Kallosh, R.; Linde, A., On hilltop and brane inflation after Planck, JCAP, 09, 030 (2019) · doi:10.1088/1475-7516/2019/09/030
[7] A.H. Guth and S.Y. Pi, Fluctuations in the new inflationary universe, Phys. Rev. Lett.49 (1982) 1110 [INSPIRE].
[8] Q. Shafi and V.N. Senoguz, Coleman-Weinberg potential in good agreement with WMAP, Phys. Rev. D73 (2006) 127301 [astro-ph/0603830] [INSPIRE].
[9] Badziak, M.; Olechowski, M., Volume modulus inflection point inflation and the gravitino mass problem, JCAP, 02, 010 (2009) · doi:10.1088/1475-7516/2009/02/010
[10] Enqvist, K.; Mazumdar, A.; Stephens, P., Inflection point inflation within supersymmetry, JCAP, 06, 020 (2010) · doi:10.1088/1475-7516/2010/06/020
[11] Okada, N.; Şenoğuz, VN; Shafi, Q., The observational status of simple inflationary models: an update, Turk. J. Phys., 40, 150 (2016) · doi:10.3906/fiz-1505-7
[12] N. Okada and D. Raut, Inflection-point Higgs inflation, Phys. Rev. D95 (2017) 035035 [arXiv:1610.09362] [INSPIRE].
[13] Choi, S-M; Lee, HM, Inflection point inflation and reheating, Eur. Phys. J. C, 76, 303 (2016) · doi:10.1140/epjc/s10052-016-4150-5
[14] N. Okada, S. Okada and D. Raut, Inflection-point inflation in hyper-charge oriented U(1)_Xmodel, Phys. Rev. D95 (2017) 055030 [arXiv:1702.02938] [INSPIRE].
[15] Urbano, A., Inflation without gauge redundancy, JCAP, 04, 040 (2020) · Zbl 1491.83056 · doi:10.1088/1475-7516/2020/04/040
[16] Bai, Y.; Stolarski, D., Dynamical inflection point inflation, JCAP, 03, 091 (2021) · Zbl 1485.83116 · doi:10.1088/1475-7516/2021/03/091
[17] A. Ghoshal, N. Okada and A. Paul, Radiative plateau inflation with conformal invariance: dynamical generation of electroweak and seesaw scales, Phys. Rev. D106 (2022) 055024 [arXiv:2203.00677] [INSPIRE].
[18] Ghoshal, A., Inflection-point inflation and dark matter redux, JHEP, 09, 231 (2022) · doi:10.1007/JHEP09(2022)231
[19] A. Ghoshal, N. Okada and A. Paul, eV Hubble scale inflation with a radiative plateau: very light inflaton, reheating, and dark matter in B-L extensions, Phys. Rev. D106 (2022) 095021 [arXiv:2203.03670] [INSPIRE].
[20] M. Fukugita and T. Yanagida, Baryogenesis without grand unification, Phys. Lett. B174 (1986) 45 [INSPIRE].
[21] Hall, LJ; Jedamzik, K.; March-Russell, J.; West, SM, Freeze-in production of FIMP dark matter, JHEP, 03, 080 (2010) · Zbl 1271.83088 · doi:10.1007/JHEP03(2010)080
[22] S.R. Coleman and E.J. Weinberg, Radiative corrections as the origin of spontaneous symmetry breaking, Phys. Rev. D7 (1973) 1888 [INSPIRE].
[23] Mohapatra, RN, Mechanism for understanding small neutrino mass in superstring theories, Phys. Rev. Lett., 56, 561 (1986) · doi:10.1103/PhysRevLett.56.561
[24] R.N. Mohapatra and J.W.F. Valle, Neutrino mass and baryon number nonconservation in superstring models, Phys. Rev. D34 (1986) 1642 [INSPIRE].
[25] Gonzalez-Garcia, MC; Valle, JWF, Fast decaying neutrinos and observable flavor violation in a new class of Majoron models, Phys. Lett. B, 216, 360 (1989) · doi:10.1016/0370-2693(89)91131-3
[26] V.A. Kuzmin, V.A. Rubakov and M.E. Shaposhnikov, On the anomalous electroweak baryon number nonconservation in the early universe, Phys. Lett. B155 (1985) 36 [INSPIRE].
[27] A. Pilaftsis and T.E.J. Underwood, Resonant leptogenesis, Nucl. Phys. B692 (2004) 303 [hep-ph/0309342] [INSPIRE].
[28] S. Blanchet, P.S.B. Dev and R.N. Mohapatra, Leptogenesis with TeV scale inverse seesaw in SO(10), Phys. Rev. D82 (2010) 115025 [arXiv:1010.1471] [INSPIRE].
[29] Gu, P-H; Sarkar, U., Leptogenesis with linear, inverse or double seesaw, Phys. Lett. B, 694, 226 (2011) · doi:10.1016/j.physletb.2010.09.062
[30] Harvey, JA; Turner, MS, Cosmological baryon and lepton number in the presence of electroweak fermion number violation, Phys. Rev. D, 42, 3344 (1990) · doi:10.1103/PhysRevD.42.3344
[31] G.F. Giudice, E.W. Kolb and A. Riotto, Largest temperature of the radiation era and its cosmological implications, Phys. Rev. D64 (2001) 023508 [hep-ph/0005123] [INSPIRE].
[32] Hahn-Woernle, F.; Plumacher, M., Effects of reheating on leptogenesis, Nucl. Phys. B, 806, 68 (2009) · Zbl 1192.83080 · doi:10.1016/j.nuclphysb.2008.07.032
[33] M.A.G. Garcia, K. Kaneta, Y. Mambrini and K.A. Olive, Reheating and post-inflationary production of dark matter, Phys. Rev. D101 (2020) 123507 [arXiv:2004.08404] [INSPIRE].
[34] Barman, B.; Borah, D.; Das, SJ; Roshan, R., Non-thermal origin of asymmetric dark matter from inflaton and primordial black holes, JCAP, 03, 031 (2022) · doi:10.1088/1475-7516/2022/03/031
[35] H. Easa, T. Gregoire, D. Stolarski and C. Cosme, Baryogenesis and dark matter in multiple hidden sectors, arXiv:2206.11314 [INSPIRE].
[36] Gondolo, P.; Gelmini, G., Cosmic abundances of stable particles: improved analysis, Nucl. Phys. B, 360, 145 (1991) · doi:10.1016/0550-3213(91)90438-4
[37] W. Buchmuller, P. Di Bari and M. Plumacher, Leptogenesis for pedestrians, Annals Phys.315 (2005) 305 [hep-ph/0401240] [INSPIRE]. · Zbl 1062.85519
[38] G. Uhlrich, F. Mahmoudi and A. Arbey, MARTY — Modern ARtificial Theoretical phYsicist. a C++ framework automating theoretical calculations beyond the standard model, Comput. Phys. Commun.264 (2021) 107928 [arXiv:2011.02478] [INSPIRE].
[39] Simons Observatory collaboration, The Simons Observatory: science goals and forecasts, JCAP02 (2019) 056 [arXiv:1808.07445] [INSPIRE].
[40] S. Dawson et al., Report of the topical group on Higgs physics for Snowmass 2021: the case for precision Higgs physics, in the proceedings of the Snowmass 2021, (2022) [arXiv:2209.07510] [INSPIRE].
[41] A.M. Abdullahi et al., The present and future status of heavy neutral leptons, J. Phys. G50 (2023) 020501 [arXiv:2203.08039] [INSPIRE].
[42] R. Alarcon et al., Electric dipole moments and the search for new physics, in the proceedings of the Snowmass 2021, (2022) [arXiv:2203.08103] [INSPIRE].
[43] D. Baumann, Inflation, in the proceedings of the Theoretical Advanced Study Institute in Elementary Particle Physics: physics of the large and the small, (2011), p. 523 [doi:10.1142/9789814327183_0010] [arXiv:0907.5424] [INSPIRE].
[44] ACT collaboration, The Atacama Cosmology Telescope: DR4 maps and cosmological parameters, JCAP12 (2020) 047 [arXiv:2007.07288] [INSPIRE].
[45] Passarino, G.; Veltman, MJG, One loop corrections for e^+e^−annihilation into μ^+μ^−in the Weinberg model, Nucl. Phys. B, 160, 151 (1979) · doi:10.1016/0550-3213(79)90234-7
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.