×

Two-loop vertices with vacuum polarization insertion. (English) Zbl 07821493

Summary: We present the analytic evaluation of the second-order corrections to the massive form factors, due to two-loop vertex diagrams with a vacuum polarization insertion, with exact dependence on the external and internal fermion masses, and on the squared momentum transfer. We consider vector, axial-vector, scalar and pseudoscalar interactions between the external fermion and the external field. After renormalization, the finite expressions of the form factors are expressed in terms of polylogarithms up to weight three.

MSC:

81V10 Electromagnetic interaction; quantum electrodynamics
81T15 Perturbative methods of renormalization applied to problems in quantum field theory
05C69 Vertex subsets with special properties (dominating sets, independent sets, cliques, etc.)
35B20 Perturbations in context of PDEs
81V10 Electromagnetic interaction; quantum electrodynamics
81V74 Fermionic systems in quantum theory
37E20 Universality and renormalization of dynamical systems
11G55 Polylogarithms and relations with \(K\)-theory

References:

[1] R. Barbieri, J.A. Mignaco and E. Remiddi, Electron form-factors up to fourth order. I, Nuovo Cim. A11 (1972) 824 [INSPIRE].
[2] R. Barbieri, J.A. Mignaco and E. Remiddi, Electron form factors up to fourth order. II, Nuovo Cim. A11 (1972) 865 [INSPIRE].
[3] Mastrolia, P.; Remiddi, E., Two loop form-factors in QED, Nucl. Phys. B, 664, 341 (2003) · Zbl 1051.81695 · doi:10.1016/S0550-3213(03)00405-X
[4] Bonciani, R.; Mastrolia, P.; Remiddi, E., Vertex diagrams for the QED form-factors at the two loop level, Nucl. Phys. B, 661, 289 (2003) · Zbl 1030.81526 · doi:10.1016/S0550-3213(03)00299-2
[5] Bonciani, R.; Mastrolia, P.; Remiddi, E., QED vertex form-factors at two loops, Nucl. Phys. B, 676, 399 (2004) · doi:10.1016/j.nuclphysb.2003.10.031
[6] A.V. Kotikov, Differential equations method: New technique for massive Feynman diagrams calculation, Phys. Lett. B254 (1991) 158 [INSPIRE]. · Zbl 1020.81734
[7] Remiddi, E., Differential equations for Feynman graph amplitudes, Nuovo Cim. A, 110, 1435 (1997) · doi:10.1007/BF03185566
[8] Gehrmann, T.; Remiddi, E., Differential equations for two loop four point functions, Nucl. Phys. B, 580, 485 (2000) · Zbl 1071.81089 · doi:10.1016/S0550-3213(00)00223-6
[9] Remiddi, E.; Vermaseren, JAM, Harmonic polylogarithms, Int. J. Mod. Phys. A, 15, 725 (2000) · Zbl 0951.33003 · doi:10.1142/S0217751X00000367
[10] A.B. Goncharov, Multiple polylogarithms and mixed Tate motives, math/0103059 [INSPIRE]. · Zbl 0919.11080
[11] B.A. Kniehl, Two Loop QED Vertex Correction From Virtual Heavy Fermions, Phys. Lett. B237 (1990) 127 [INSPIRE].
[12] B.A. Kniehl, Two loop \(O\left({\alpha}_s^2\right)\) correction to the H → bb decay rate induced by the top quark, Phys. Lett. B343 (1995) 299 [hep-ph/9410356] [INSPIRE].
[13] Bernreuther, W., Two-loop QCD corrections to the heavy quark form-factors: The Vector contributions, Nucl. Phys. B, 706, 245 (2005) · Zbl 1137.81380 · doi:10.1016/j.nuclphysb.2004.10.059
[14] Bernreuther, W., Two-loop QCD corrections to the heavy quark form-factors: Axial vector contributions, Nucl. Phys. B, 712, 229 (2005) · Zbl 1109.81370 · doi:10.1016/j.nuclphysb.2005.01.035
[15] W. Bernreuther et al., Two-loop QCD corrections to the heavy quark form-factors: Anomaly contributions, Nucl. Phys. B723 (2005) 91 [hep-ph/0504190] [INSPIRE]. · Zbl 1137.81380
[16] Bernreuther, W., QCD corrections to static heavy quark form-factors, Phys. Rev. Lett., 95, 261802 (2005) · doi:10.1103/PhysRevLett.95.261802
[17] Bernreuther, W., Decays of scalar and pseudoscalar Higgs bosons into fermions: Two-loop QCD corrections to the Higgs-quark-antiquark amplitude, Phys. Rev. D, 72, 096002 (2005) · doi:10.1103/PhysRevD.72.096002
[18] Czakon, M.; Gluza, J.; Riemann, T., Master integrals for massive two-loop bhabha scattering in QED, Phys. Rev. D, 71 (2005) · Zbl 1192.81157 · doi:10.1103/PhysRevD.71.073009
[19] Gluza, J.; Mitov, A.; Moch, S.; Riemann, T., The QCD form factor of heavy quarks at NNLO, JHEP, 07, 001 (2009) · doi:10.1088/1126-6708/2009/07/001
[20] Ahmed, T.; Henn, JM; Steinhauser, M., High energy behaviour of form factors, JHEP, 06, 125 (2017) · doi:10.1007/JHEP06(2017)125
[21] Ablinger, J., Heavy quark form factors at two loops, Phys. Rev. D, 97 (2018) · doi:10.1103/PhysRevD.97.094022
[22] Primo, A.; Sasso, G.; Somogyi, G.; Tramontano, F., Exact Top Yukawa corrections to Higgs boson decay into bottom quarks, Phys. Rev. D, 99 (2019) · doi:10.1103/PhysRevD.99.054013
[23] Lee, RN; Smirnov, AV; Smirnov, VA; Steinhauser, M., Three-loop massive form factors: complete light-fermion and large-N_ccorrections for vector, axial-vector, scalar and pseudo-scalar currents, JHEP, 05, 187 (2018) · doi:10.1007/JHEP05(2018)187
[24] Mitov, A.; Moch, S., The singular behavior of massive QCD amplitudes, JHEP, 05, 001 (2007) · doi:10.1088/1126-6708/2007/05/001
[25] Ablinger, J., Heavy quark form factors at three loops in the planar limit, Phys. Lett. B, 782, 528 (2018) · doi:10.1016/j.physletb.2018.05.077
[26] Blümlein, J.; Marquard, P.; Rana, N.; Schneider, C., The Heavy Fermion Contributions to the Massive Three Loop Form Factors, Nucl. Phys. B, 949 (2019) · Zbl 1448.81470 · doi:10.1016/j.nuclphysb.2019.114751
[27] Fael, M.; Lange, F.; Schönwald, K.; Steinhauser, M., Massive Vector Form Factors to Three Loops, Phys. Rev. Lett., 128 (2022) · doi:10.1103/PhysRevLett.128.172003
[28] Fael, M.; Lange, F.; Schönwald, K.; Steinhauser, M., Singlet and nonsinglet three-loop massive form factors, Phys. Rev. D, 106 (2022) · doi:10.1103/PhysRevD.106.034029
[29] Fael, M.; Lange, F.; Schönwald, K.; Steinhauser, M., Massive three-loop form factors: Anomaly contribution, Phys. Rev. D, 107 (2023) · doi:10.1103/PhysRevD.107.094017
[30] Blümlein, J., Analytic results on the massive three-loop form factors: Quarkonic contributions, Phys. Rev. D, 108 (2023) · doi:10.1103/PhysRevD.108.094003
[31] Budassi, E., NNLO virtual and real leptonic corrections to muon-electron scattering, JHEP, 11, 098 (2021) · doi:10.1007/JHEP11(2021)098
[32] Bonciani, R., Two-Loop Four-Fermion Scattering Amplitude in QED, Phys. Rev. Lett., 128 (2022) · doi:10.1103/PhysRevLett.128.022002
[33] Broggio, A., Muon-electron scattering at NNLO, JHEP, 01, 112 (2023) · doi:10.1007/JHEP01(2023)112
[34] Mandal, MK; Mastrolia, P.; Ronca, J.; Bobadilla Torres, WJ, Two-loop scattering amplitude for heavy-quark pair production through light-quark annihilation in QCD, JHEP, 09, 129 (2022) · doi:10.1007/JHEP09(2022)129
[35] F.V. Tkachov, A theorem on analytical calculability of 4-loop renormalization group functions, Phys. Lett. B100 (1981) 65 [INSPIRE].
[36] K.G. Chetyrkin and F.V. Tkachov, Integration by parts: The algorithm to calculate β-functions in 4 loops, Nucl. Phys. B192 (1981) 159 [INSPIRE].
[37] Laporta, S., High-precision calculation of multiloop Feynman integrals by difference equations, Int. J. Mod. Phys. A, 15, 5087 (2000) · Zbl 0973.81082 · doi:10.1142/S0217751X00002159
[38] Argeri, M., Magnus and Dyson Series for Master Integrals, JHEP, 03, 082 (2014) · Zbl 1333.81379 · doi:10.1007/JHEP03(2014)082
[39] Fael, M., Hadronic corrections to μ-e scattering at NNLO with space-like data, JHEP, 02, 027 (2019) · doi:10.1007/JHEP02(2019)027
[40] Fael, M.; Passera, M., Muon-Electron Scattering at Next-To-Next-To-Leading Order: The Hadronic Corrections, Phys. Rev. Lett., 122 (2019) · doi:10.1103/PhysRevLett.122.192001
[41] Vollinga, J.; Weinzierl, S., Numerical evaluation of multiple polylogarithms, Comput. Phys. Commun., 167, 177 (2005) · Zbl 1196.65045 · doi:10.1016/j.cpc.2004.12.009
[42] Banerjee, P.; Engel, T.; Signer, A.; Ulrich, Y., QED at NNLO with McMule, SciPost Phys., 9, 027 (2020) · doi:10.21468/SciPostPhys.9.2.027
[43] Borowka, S., pySecDec: a toolbox for the numerical evaluation of multi-scale integrals, Comput. Phys. Commun., 222, 313 (2018) · Zbl 07693053 · doi:10.1016/j.cpc.2017.09.015
[44] Liu, X.; Ma, Y-Q, AMFlow: A Mathematica package for Feynman integrals computation via auxiliary mass flow, Comput. Phys. Commun., 283 (2023) · Zbl 07693415 · doi:10.1016/j.cpc.2022.108565
[45] M. Passera, The standard model prediction of the muon anomalous magnetic moment, J. Phys. G31 (2005) R75 [hep-ph/0411168] [INSPIRE].
[46] Henn, JM, What Can We Learn About QCD and Collider Physics from N = 4 Super Yang-Mills?, Ann. Rev. Nucl. Part. Sci., 71, 87 (2021) · doi:10.1146/annurev-nucl-102819-100428
[47] G. ’t Hooft and M.J.G. Veltman, Regularization and Renormalization of Gauge Fields, Nucl. Phys. B44 (1972) 189 [INSPIRE].
[48] P. Breitenlohner and D. Maison, Dimensional Renormalization and the Action Principle, Commun. Math. Phys.52 (1977) 11 [INSPIRE]. · Zbl 0597.53068
[49] S.A. Larin and J.A.M. Vermaseren, The α^3corrections to the Bjorken sum rule for polarized electroproduction and to the Gross-Llewellyn Smith sum rule, Phys. Lett. B259 (1991) 345 [INSPIRE].
[50] Larin, SA, The renormalization of the axial anomaly in dimensional regularization, Phys. Lett. B, 303, 113 (1993) · doi:10.1016/0370-2693(93)90053-K
[51] Chen, L., A prescription for projectors to compute helicity amplitudes in D dimensions, Eur. Phys. J. C, 81, 417 (2021) · doi:10.1140/epjc/s10052-021-09210-9
[52] T. Ahmed et al., Polarised Amplitudes and Soft-Virtual Cross Sections for \(b\overline{b}\to ZH\) at NNLO in QCD, JHEP01 (2020) 030 [arXiv:1910.06347] [INSPIRE].
[53] Patel, HH, Package-X: A Mathematica package for the analytic calculation of one-loop integrals, Comput. Phys. Commun., 197, 276 (2015) · Zbl 1351.81011 · doi:10.1016/j.cpc.2015.08.017
[54] R. Mertig, M. Böhm and A. Denner, FEYN CALC: Computer algebraic calculation of Feynman amplitudes, Comput. Phys. Commun.64 (1991) 345 [INSPIRE].
[55] R.N. Lee, Presenting LiteRed: a tool for the Loop InTEgrals REDuction, arXiv:1212.2685 [INSPIRE].
[56] Lee, RN, LiteRed 1.4: a powerful tool for reduction of multiloop integrals, J. Phys. Conf. Ser., 523 (2014) · doi:10.1088/1742-6596/523/1/012059
[57] Smirnov, AV; Chuharev, FS, FIRE6: Feynman Integral REduction with Modular Arithmetic, Comput. Phys. Commun., 247 (2020) · Zbl 1510.81007 · doi:10.1016/j.cpc.2019.106877
[58] Henn, JM, Multiloop integrals in dimensional regularization made simple, Phys. Rev. Lett., 110 (2013) · doi:10.1103/PhysRevLett.110.251601
[59] Besier, M.; Wasser, P.; Weinzierl, S., RationalizeRoots: Software Package for the Rationalization of Square Roots, Comput. Phys. Commun., 253 (2020) · Zbl 1535.65031 · doi:10.1016/j.cpc.2020.107197
[60] H.R.P. Ferguson and D.H. Bailey, A Polynomial Time, Numerically Stable Integer Relation Algorithm, RNRTechnical Report RNR-91-032 (1992).
[61] Duhr, C.; Dulat, F., PolyLogTools — polylogs for the masses, JHEP, 08, 135 (2019) · doi:10.1007/JHEP08(2019)135
[62] Frellesvig, H.; Tommasini, D.; Wever, C., On the reduction of generalized polylogarithms to Li_nand Li_2,2and on the evaluation thereof, JHEP, 03, 189 (2016) · Zbl 1388.33001 · doi:10.1007/JHEP03(2016)189
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.