×

Restrictions of Pfaffian systems for Feynman integrals. (English) Zbl 07795917

Summary: This work studies limits of Pfaffian systems, a class of first-order PDEs appearing in the Feynman integral calculus. Such limits appear naturally in the context of scattering amplitudes when there is a separation of scale in a given set of kinematic variables. We model these limits, which are often singular, via restrictions of \(\mathcal{D}\)-modules. We thereby develop two different restriction algorithms: one based on gauge transformations, and another relying on the Macaulay matrix. These algorithms output Pfaffian systems containing fewer variables and of smaller rank. We show that it is also possible to retain logarithmic corrections in the limiting variable. The algorithms are showcased in many examples involving Feynman integrals and hypergeometric functions coming from GKZ systems. This work serves as a continuation of [V. Chestnov et al., J. High Energy Phys. 2022, No. 9, Paper No. 187, 57 p. (2022; Zbl 1531.81092)].

MSC:

81-XX Quantum theory

Citations:

Zbl 1531.81092

References:

[1] Chestnov, V., Macaulay matrix for Feynman integrals: linear relations and intersection numbers, JHEP, 09, 187 (2022) · Zbl 1531.81092 · doi:10.1007/JHEP09(2022)187
[2] K.-T. Chen, Iterated path integrals, Bull. Am. Math. Soc.83 (1977) 831 [INSPIRE]. · Zbl 0389.58001
[3] C. Duhr, Mathematical aspects of scattering amplitudes, in the proceedings of the Theoretical Advanced Study Institute in Elementary Particle Physics: Journeys Through the Precision Frontier: Amplitudes for Colliders, Boulder U.S.A., June 2-27 (2014), p. 419-476 [doi:10.1142/9789814678766_0010] [arXiv:1411.7538] [INSPIRE]. · Zbl 1334.81100
[4] Liu, X.; Ma, Y-Q, AMFlow: A Mathematica package for Feynman integrals computation via auxiliary mass flow, Comput. Phys. Commun., 283 (2023) · Zbl 07693415 · doi:10.1016/j.cpc.2022.108565
[5] Hidding, M., DiffExp, a Mathematica package for computing Feynman integrals in terms of one-dimensional series expansions, Comput. Phys. Commun., 269 (2021) · Zbl 1518.65150 · doi:10.1016/j.cpc.2021.108125
[6] Armadillo, T., Evaluation of Feynman integrals with arbitrary complex masses via series expansions, Comput. Phys. Commun., 282 (2023) · Zbl 1523.81077 · doi:10.1016/j.cpc.2022.108545
[7] Davies, J.; Herren, F.; Mishima, G.; Steinhauser, M., Real corrections to Higgs boson pair production at NNLO in the large top quark mass limit, JHEP, 01, 049 (2022) · doi:10.1007/JHEP01(2022)049
[8] Alasfar, L., Virtual corrections to gg → ZH via a transverse momentum expansion, JHEP, 05, 168 (2021) · doi:10.1007/JHEP05(2021)168
[9] S. Caron-Huot et al., Multi-Regge Limit of the Two-Loop Five-Point Amplitudes in \(\mathcal{N} = 4\) Super Yang-Mills and \(\mathcal{N} = 8\) Supergravity, JHEP10 (2020) 188 [arXiv:2003.03120] [INSPIRE]. · Zbl 1456.83112
[10] J. Parra-Martinez, M.S. Ruf and M. Zeng, Extremal black hole scattering at \(\mathcal{O}\left({G}^3\right) \): graviton dominance, eikonal exponentiation, and differential equations, JHEP11 (2020) 023 [arXiv:2005.04236] [INSPIRE]. · Zbl 1456.83117
[11] T. Becher, A. Broggio and A. Ferroglia, Introduction to Soft-Collinear Effective Theory, Springer (2015) [doi:10.1007/978-3-319-14848-9] [INSPIRE].
[12] F. Dulat and B. Mistlberger, Real-Virtual-Virtual contributions to the inclusive Higgs cross section at N3LO, arXiv:1411.3586 [INSPIRE].
[13] Di Vita, S.; Mastrolia, P.; Schubert, U.; Yundin, V., Three-loop master integrals for ladder-box diagrams with one massive leg, JHEP, 09, 148 (2014) · doi:10.1007/JHEP09(2014)148
[14] Mastrolia, P.; Passera, M.; Primo, A.; Schubert, U., Master integrals for the NNLO virtual corrections to μe scattering in QED: the planar graphs, JHEP, 11, 198 (2017) · doi:10.1007/JHEP11(2017)198
[15] Lee, RN; Smirnov, AV; Smirnov, VA, Evaluating ‘elliptic’ master integrals at special kinematic values: using differential equations and their solutions via expansions near singular points, JHEP, 07, 102 (2018) · Zbl 1395.81288 · doi:10.1007/JHEP07(2018)102
[16] M. Beneke and V.A. Smirnov, Asymptotic expansion of Feynman integrals near threshold, Nucl. Phys. B522 (1998) 321 [hep-ph/9711391] [INSPIRE].
[17] Syrrakos, N., Two-loop master integrals for a planar and a non-planar topology relevant for single top production, JHEP, 05, 131 (2023) · Zbl 07701946 · doi:10.1007/JHEP05(2023)131
[18] Papadopoulos, CG, Simplified differential equations approach for Master Integrals, JHEP, 07, 088 (2014) · doi:10.1007/JHEP07(2014)088
[19] Y. Haraoka, Linear Differential Equations in the Complex Domain: From Classical Theory to Forefront, Springer International Publishing (2020) [doi:10.1007/978-3-030-54663-2]. · Zbl 1460.34002
[20] Bytev, VV; Kniehl, BA; Veretin, OL, Specializations of partial differential equations for Feynman integrals, Nucl. Phys. B, 984 (2022) · Zbl 1514.81126 · doi:10.1016/j.nuclphysb.2022.115972
[21] M. Kashiwara, On the maximally overdetermined system of linear differential equations. I, Publ. Res. Inst. Math. Sci10 (1974) 563. · Zbl 0313.58019
[22] R. Hotta, K. Takeuchi and T. Tanisaki, D-modules, perverse sheaves, and representation theory, R. Hotta, K. Takeuchi and T. Tanisaki eds., Translated from the 1995 Japanese edition by Takeuchi, Birkhäuser Boston (2008) [doi:10.1007/978-0-8176-4523-6]. · Zbl 1136.14009
[23] P. Deligne, Équations différentielles à points singuliers réguliers, Springer-Verlag Berlin-New York (1970) [doi:10.1007/bfb0061194]. · Zbl 0244.14004
[24] I.M. Gel’fand, A.V. Zelevinskiĭ and M.M. Kapranov, Hypergeometric functions and toral manifolds, Funct. Anal. Appl.23 (1989) 94. · Zbl 0721.33006
[25] E. Nasrollahpoursamami, Periods of Feynman Diagrams and GKZ D-Modules, arXiv:1605.04970.
[26] de la Cruz, L., Feynman integrals as A-hypergeometric functions, JHEP, 12, 123 (2019) · Zbl 1431.81061 · doi:10.1007/JHEP12(2019)123
[27] Klausen, RP, Kinematic singularities of Feynman integrals and principal A-determinants, JHEP, 02, 004 (2022) · Zbl 1516.81091 · doi:10.1007/JHEP02(2022)004
[28] Klausen, RP, Hypergeometric Series Representations of Feynman Integrals by GKZ Hypergeometric Systems, JHEP, 04, 121 (2020) · Zbl 1436.81049 · doi:10.1007/JHEP04(2020)121
[29] R.P. Klausen, Hypergeometric feynman integrals, Ph.D. thesis, Johannes Gutenberg-Universität Mainz (JGU), Germany (2023) [10.25358/openscience-8527] [arXiv:2302.13184] [INSPIRE]. · Zbl 1436.81049
[30] Tellander, F.; Helmer, M., Cohen-Macaulay Property of Feynman Integrals, Commun. Math. Phys., 399, 1021 (2023) · Zbl 1535.81119 · doi:10.1007/s00220-022-04569-6
[31] Pal, A.; Ray, K., Conformal integrals in four dimensions, JHEP, 10, 087 (2022) · Zbl 1534.81145 · doi:10.1007/JHEP10(2022)087
[32] A. Pal and K. Ray, Conformal integrals in various dimensions and Clifford groups, arXiv:2303.17326 [INSPIRE].
[33] Ananthanarayan, B.; Banik, S.; Bera, S.; Datta, S., FeynGKZ: A Mathematica package for solving Feynman integrals using GKZ hypergeometric systems, Comput. Phys. Commun., 287 (2023) · Zbl 1529.33002 · doi:10.1016/j.cpc.2023.108699
[34] Feng, T-F; Zhang, H-B; Chang, C-H, Feynman integrals of Grassmannians, Phys. Rev. D, 106 (2022) · doi:10.1103/PhysRevD.106.116025
[35] Feng, T-F; Zhang, H-B; Dong, Y-Q; Zhou, Y., GKZ-system of the 2-loop self energy with 4 propagators, Eur. Phys. J. C, 83, 314 (2023) · doi:10.1140/epjc/s10052-023-11438-6
[36] Feng, T-F; Chang, C-H; Chen, J-B; Zhang, H-B, GKZ-hypergeometric systems for Feynman integrals, Nucl. Phys. B, 953 (2020) · Zbl 1473.81066 · doi:10.1016/j.nuclphysb.2020.114952
[37] Zhang, H-B; Feng, T-F, GKZ hypergeometric systems of the three-loop vacuum Feynman integrals, JHEP, 05, 075 (2023) · Zbl 07701890 · doi:10.1007/JHEP05(2023)075
[38] Walther, U., On Feynman graphs, matroids, and GKZ-systems, Lett. Math. Phys., 112, 120 (2022) · Zbl 1513.81067 · doi:10.1007/s11005-022-01614-2
[39] Dlapa, C.; Helmer, M.; Papathanasiou, G.; Tellander, F., Symbol alphabets from the Landau singular locus, JHEP, 10, 161 (2023) · Zbl 07774766 · doi:10.1007/JHEP10(2023)161
[40] D. Agostini, C. Fevola, A.-L. Sattelberger and S. Telen, Vector Spaces of Generalized Euler Integrals, arXiv:2208.08967 [INSPIRE].
[41] H.J. Munch, Feynman Integral Relations from GKZ Hypergeometric Systems, PoSLL2022 (2022) 042 [arXiv:2207.09780] [INSPIRE].
[42] Klemm, A.; Nega, C.; Safari, R., The l-loop Banana Amplitude from GKZ Systems and relative Calabi-Yau Periods, JHEP, 04, 088 (2020) · doi:10.1007/JHEP04(2020)088
[43] Bönisch, K., Analytic structure of all loop banana integrals, JHEP, 05, 066 (2021) · Zbl 1466.81022 · doi:10.1007/JHEP05(2021)066
[44] T. Hibi, K. Nishiyama and N. Takayama, Pfaffian systems of A-hypergeometric equations I: Bases of twisted cohomology groups, Adv. Math.306 (2017) 303. · Zbl 1401.13079
[45] S. Laporta, High precision calculation of multiloop Feynman integrals by difference equations, Int. J. Mod. Phys. A15 (2000) 5087 [hep-ph/0102033] [INSPIRE]. · Zbl 0973.81082
[46] Mastrolia, P.; Mizera, S., Feynman Integrals and Intersection Theory, JHEP, 02, 139 (2019) · Zbl 1411.81093 · doi:10.1007/JHEP02(2019)139
[47] Frellesvig, H., Vector Space of Feynman Integrals and Multivariate Intersection Numbers, Phys. Rev. Lett., 123 (2019) · doi:10.1103/PhysRevLett.123.201602
[48] Frellesvig, H., Decomposition of Feynman Integrals by Multivariate Intersection Numbers, JHEP, 03, 027 (2021) · Zbl 1461.81044 · doi:10.1007/JHEP03(2021)027
[49] S. Caron-Huot and A. Pokraka, Duals of Feynman integrals. Part I. Differential equations, JHEP12 (2021) 045 [arXiv:2104.06898] [INSPIRE]. · Zbl 1521.81087
[50] S. Caron-Huot and A. Pokraka, Duals of Feynman Integrals. Part II. Generalized unitarity, JHEP04 (2022) 078 [arXiv:2112.00055] [INSPIRE]. · Zbl 1522.81270
[51] P. Vanhove, Differential Equations for Feynman Integrals, in the proceedings of the of the 2021 on International Symposium on Symbolic and Algebraic Computation, Online Russian Federation, July 18-23 (2021) [doi:10.1145/3452143.3465512].
[52] J. Henn, E. Pratt, A.-L. Sattelberger and S. Zoia, D-Module Techniques for Solving Differential Equations in the Context of Feynman Integrals, arXiv:2303.11105 [INSPIRE].
[53] F. Loebbert, Integrability for Feynman Integrals, arXiv:2212.09636 [INSPIRE].
[54] T. Oaku, Algorithms for b-functions, restrictions, and algebraic local cohomology groups of D-modules, Advances in Applied Mathematics19 (1997) 61. · Zbl 0938.32005
[55] Peraro, T., FiniteFlow: multivariate functional reconstruction using finite fields and dataflow graphs, JHEP, 07, 031 (2019) · doi:10.1007/JHEP07(2019)031
[56] Klappert, J.; Lange, F., Reconstructing rational functions with FireFly, Comput. Phys. Commun., 247 (2020) · Zbl 1509.68342 · doi:10.1016/j.cpc.2019.106951
[57] A. Borel, P.-P. Grivel, B. Kaup, A. Haefliger, B. Malgrange and F. Ehlers, Algebraic D-modules. Volume 2, Academic Press, Inc., Boston, MA (1987) [ISBN: 9780121177409].
[58] K. Aomoto and M. Kita, Theory of Hypergeometric Functions, Springer Japan (2011) [doi:10.1007/978-4-431-53938-4]. · Zbl 1229.33001
[59] Lee, RN; Pomeransky, AA, Critical points and number of master integrals, JHEP, 11, 165 (2013) · Zbl 1342.81139 · doi:10.1007/JHEP11(2013)165
[60] M. Schulze and U. Walther, Hypergeometric D-modules and twisted Gauß-Manin systems, J. Algebra322 (2009) 3392. · Zbl 1181.13023
[61] J. Huh, The maximum likelihood degree of a very affine variety, Compos. Math. 149 (2013) 1245 [arXiv:1207.0553]. · Zbl 1282.14007
[62] E.R. Speer, Generalized Feynman Amplitudes. (AM-62), Volume 62, Princeton University Press (1969) [INSPIRE]. · Zbl 0172.27301
[63] E.R. Speer and M.J. Westwater, Generic Feynman amplitudes, Ann. Henri Poincare14 (1971) 1 [http://eudml.org/doc/75685]. · Zbl 0208.27905
[64] T. Hibi et al., Gröbner bases, Springer Japan (2013) [10.1007/978-4-431-54574-3]. · Zbl 1306.13002
[65] A. Leykin, Algorithmic proofs of two theorems of Stafford, J. Symb. Comput.38 (2004) 1535. · Zbl 1130.16304
[66] S.-J. Matsubara-Heo and N. Takayama, An algorithm of computing cohomology intersection number of hypergeometric integrals, Nagoya Math. J.246 (2021) 256 [arXiv:1904.01253]. · Zbl 1510.33014
[67] S.C. Coutinho, A primer of algebraic D-modules, Cambridge University Press (1995) Cambridge [doi:10.1017/cbo9780511623653]. · Zbl 0848.16019
[68] M. Saito, B. Sturmfels and N. Takayama, Gröbner deformations of hypergeometric differential equations, Springer Berlin (2011) [doi:10.1007/978-3-662-04112-3]. · Zbl 0946.13021
[69] W.W. Adams and P. Loustaunau, An introduction to Gröbner bases, American Mathematical Society (1994) [doi:10.1090/gsm/003/03]. · Zbl 0803.13015
[70] M.A. Barkatou, M. Jaroschek and S.S. Maddah, Formal solutions of completely integrable Pfaffian systems with normal crossings, J. Symb. Comput.81 (2017) 41 [INSPIRE]. · Zbl 1377.35060
[71] M.A. Barkatou, An algorithm to compute the exponential part of a formal fundamental matrix solution of a linear differential system, Appl. Algebra Engrg. Comm. Comput.8 (1997) 1. · Zbl 0867.65034
[72] Y. Haraoka, Integral representations of solutions of differential equations free from accessory parameters, Adv. Math.169 (2002) 187. · Zbl 1015.34081
[73] Propagation of singularities of solutions of the Euler-Darboux equation and a global structure of the space of holonomic solutions I, Funkcial. Ekvac.35 (1992) 343. · Zbl 0762.35081
[74] H. Tsai, Algorithms for associated primes, Weyl closure, and local cohomology of D-modules, in Local cohomology and its applications, G. Lybeznik ed., CRC Press (2001), pp. 169-194. [doi:10.1201/9781482275766]. · Zbl 0992.68245
[75] Encyclopedia of special functions: the Askey-Bateman project. Volume 2. Multivariable special functions, Tom H. Koornwinder and Jasper V. Stokman eds., Cambridge University Press (2021) Cambridge [doi:10.1017/9780511777165]. · Zbl 1484.33001
[76] OpenXM project (including Risa/Asir distribution), http://www.openxm.org.
[77] V. Chestnov, S.J. Matsubara-Heo, H.J. Munch and N. Takayama, Restrictions of Pfaffian Systems for Feynman Integrals — Data and Programs, http://www.math.kobe-u.ac.jp/OpenXM/Math/amp-Restriction.
[78] R.N. Lee, Presenting LiteRed: a tool for the Loop InTEgrals REDuction, arXiv:1212.2685 [INSPIRE].
[79] R.N. Lee, LiteRed 1.4: a powerful tool for reduction of multiloop integrals, J. Phys. Conf. Ser.523 (2014) 012059 [arXiv:1310.1145] [INSPIRE].
[80] Henn, JM, Multiloop integrals in dimensional regularization made simple, Phys. Rev. Lett., 110 (2013) · doi:10.1103/PhysRevLett.110.251601
[81] Henn, JM, Lectures on differential equations for Feynman integrals, J. Phys. A, 48 (2015) · Zbl 1312.81078 · doi:10.1088/1751-8113/48/15/153001
[82] Henn, JM; Smirnov, VA, Analytic results for two-loop master integrals for Bhabha scattering I, JHEP, 11, 041 (2013) · doi:10.1007/JHEP11(2013)041
[83] Duhr, C.; Smirnov, VA; Tancredi, L., Analytic results for two-loop planar master integrals for Bhabha scattering, JHEP, 09, 120 (2021) · doi:10.1007/JHEP09(2021)120
[84] J. Klappert, F. Lange, P. Maierhöfer and J. Usovitsch, Integral reduction with Kira 2.0 and finite field methods, Comput. Phys. Commun.266 (2021) 108024 [arXiv:2008.06494] [INSPIRE]. · Zbl 1523.81078
[85] M. Barkatou, T. Cluzeau, C. El Bacha and J.-A. Weil, IntegrableConnections, A Maple package for computing closed form solutions of integrable connections, http://www.unilim.fr/pages_perso/thomas.cluzeau/Packages/IntegrableConnections/PDS.html. · Zbl 1323.68580
[86] M.A. Barkatou, An algorithm for computing a companion block diagonal form for a system of linear differential equations, Appl. Algebra Engrg. Comm. Comput.4 (1993) 185. · Zbl 0780.65038
[87] M.F. Singer, Testing reducibility of linear differential operators: A group theoretic perspective, Appl. Algebra Engrg. Comm. Comput.7 (1996) 77. · Zbl 0999.12007
[88] C. Anastasiou, E.W.N. Glover and C. Oleari, Scalar one loop integrals using the negative dimension approach, Nucl. Phys. B572 (2000) 307 [hep-ph/9907494] [INSPIRE]. · Zbl 0956.81053
[89] T. Oaku, Gröbner bases for D-modules on a non-singular affine algebraic variety, Tohoku Math. J.48 (1996) 575. · Zbl 0889.13007
[90] R. HATTORI and N. TAKAYAMA, The singular locus of Lauricella’s F_C, J. Math. Soc. Jpn.66 (2014) 981. · Zbl 1312.33043
[91] M. Kato, Connection Formulas for Appell’s System F_4and Some Applications, Funkcial. Ekvac.38 (1995) 266. · Zbl 0856.33011
[92] Higher transcendental functions, McGraw-Hill Book Company Inc. (1953). · Zbl 0052.29502
[93] J. Moser, The order of a singularity in Fuchs’ theory., Math. Z.71 (1959) 379.
[94] A. Barkatou, A rational version of Moser’s algorithm, in the proceedings of the of the 1995 international symposium on Symbolic and algebraic computation — ISSAC ’95, Montreal Canada, July 10-12 (1995) [doi:10.1145/220346.220385]. · Zbl 0920.34004
[95] R. Gérard and J.P. Ramis, Resiou d’une connexion holomorphe, in Equations différentielles et systèmes de Pfaff dans le champ complexe — II, R. Gérard, JP. Ramis eds., Springer Berlin Heidelberg (1983), p. 243-306 [10.1007/bfb0071354].
[96] M.A. Barkatou, E. Pflügel and F. Stan, ISOLDE: a Maple package for systems of linear functional equations, ACM Commun. Comput. Algebra46 (2013) 157 .
[97] Gituliar, O.; Magerya, V., Fuchsia: a tool for reducing differential equations for Feynman master integrals to epsilon form, Comput. Phys. Commun., 219, 329 (2017) · Zbl 1411.81015 · doi:10.1016/j.cpc.2017.05.004
[98] D.S. Dummit and R.M. Foote, Abstract algebra, third edition, John Wiley & Sons, Inc. (2004). [ISBN: 9780471433347]. · Zbl 1037.00003
[99] C. Berkesch, J. Forsgård and M. Passare, Euler-Mellin integrals and A-hypergeometric functions, Michigan Math. J.63 (2014) 101. [arXiv:1103.6273]. · Zbl 1290.32008
[100] Y. Goto and S.-J. Matsubara-Heo, Homology and cohomology intersection numbers of GKZ systems, arXiv:2006.07848. · Zbl 1507.14073
[101] V. Weispfenning, Comprehensive Gröbner bases, J. Symb. Comput.14 (1992) 1. · Zbl 0784.13013
[102] H. Nakayama and N. Takayama, Comprehensive Gröbner bases and D-module restrictions of hypergeometric systems, in preparation.
[103] U. Walther, Algorithmic stratification of \({\mathbb{R}\mathcal{H} om}_{\mathcal{D}}\left(\mathcal{M},\mathcal{N}\right)\) for regular algebraic \(\mathcal{D} \)-modules on ℂ^n, J. Symb. Comput.39 (2005) 493. · Zbl 1130.32002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.