×

Performance analysis of Volna-OP2 – massively parallel code for tsunami modelling. (English) Zbl 1521.76004

Summary: The software package Volna-OP2 is a robust and efficient code capable of simulating the complete life cycle of a tsunami whilst harnessing the latest High Performance Computing (HPC) architectures. In this paper, a comprehensive error analysis and scalability study of the GPU version of the code is presented. A novel decomposition of the numerical errors into the dispersion and dissipation components is explored. Most tsunami codes exhibit amplitude smearing and/or phase lagging/leading, so the decomposition shown here is a new approach and novel tool for explaining these occurrences.
To date, Volna-OP2 has been widely used by the tsunami modelling community. In particular its computational efficiency has allowed various sensitivity analyses and uncertainty quantification studies. Due to the number of simulations required, there is always a trade-off between accuracy and runtime when carrying out these statistical studies. The analysis presented in this paper will guide the user towards an acceptable level of accuracy within a given runtime.

MSC:

76-04 Software, source code, etc. for problems pertaining to fluid mechanics
65Y15 Packaged methods for numerical algorithms
86A15 Seismology (including tsunami modeling), earthquakes

References:

[1] Postacioglu, N.; Özeren, M. S., A semi-spectral modelling of landslide tsunamis, Geophys J Int, 175, 1, 1-16 (2008)
[2] Behrens, J.; Dias, F., New computational methods in tsunami science, Phil Trans R Soc A, 373, 20140382 (2015) · Zbl 1353.86029
[3] Titov, V. V.; Gonzalez, F. I., Implementation and testing of the method of splitting tsunami (MOST) model, NOAA Technical Memorandum ERL PMEL-112, 11 pp UNIDATA (1997)
[4] Liu, P. L.-F.; Woo, S.-B.; Cho, Y. S., Computer programs for tsunami propagation and inundation (1998), Cornell University
[5] Gailler, A.; Hébert, H.; Loevenbruck, A.; Hernandez, B., Simulation systems for tsunami wave propagation forecasting within the French tsunami warning center, Nat Hazards Earth Syst Sci, 13, 10, 2465 (2013)
[6] Zhang, Y. J.; Baptista, A. M., An efficient and robust tsunami model on unstructured grids. Part I: Inundation benchmarks, Pure Appl Geophys, 165, 11, 2229-2248 (2008)
[7] Harig, S.; Chaeroni; Pranowo, W. S., Tsunami simulations on several scales, Ocean Dyn, 58, 5, 429-440 (2008)
[8] Vater, S.; Behrens, J., Well-Balanced Inundation Modeling for Shallow-Water Flows with Discontinuous Galerkin Schemes, Finite volumes for complex applications VII-elliptic, parabolic and hyperbolic problems, 965-973 (2014), Springer · Zbl 1426.76575
[9] Jacobs, C. T.; Piggott, M. D., Firedrake-Fluids v0.1: numerical modelling of shallow water flows using an automated solution framework, Geosci Model Dev, 8, 3, 533-547 (2015)
[10] Berger, M. J.; George, D. L.; LeVeque, R. J.; Mandli, K. T., The GeoClaw software for depth-averaged flows with adaptive refinement, Adv Water Resour, 34, 1195-1206 (2011)
[11] Macias, J.; Castro, M. J.; Ortega, S.; Escalante, C.; Gonzalez-Vida, J. M., Performance Benchmarking of Tsunami-HySEA Model for NTHMP’s Inundation Mapping Activites, Pure Appl Geophys, 174, 3147-3183 (2017)
[12] Kennedy, A. B.; Chen, Q.; Kirby, J. T.; Dalrymple, R. A., Boussinesq Modeling of Wave Transformation, Breaking, and Runup. I: 1D, J Waterw Port Coastal Ocean Eng, 126, 1, 39-47 (2000)
[13] Lynett, P. J.; Wu, T.-R.; Liu, P. L.F., Modeling wave runup with depth-integrated equations, Coastal Eng, 46, 2, 89-107 (2002)
[14] Tavakkol, S.; Lynett, P., Celeris: a GPU-accelerated open source software with a Boussinesq-type wave solver for real-time interactive simulation and visualization, Comput Phys Commun, 217, 117-127 (2017) · Zbl 1411.35006
[15] Satria, M. T.; Huang, B.; Hsieh, T.-J.; Chang, Y.-L.; Liang, W. Y., GPU Acceleration of Tsunami Propagation Model, IEEE J Sel Top Appl Earth Obs Remote Sens, 5, 3, 1014-1023 (2012)
[16] Liang, W.-Y.; Hsieh, T.-J.; Satria, M. T.; Chang, Y.-L.; Fang, J.-P.; Chen, C.-C., A GPU-Based Simulation of Tsunami Propagation and Inundation, Algorithms and architectures for parallel processing: 9th international conference, ICA3PP 2009, Taipei, Taiwan, June 8-11, 2009 proceedings, 593-603 (2009), Springer Berlin Heidelberg
[17] Brodtkorb, A. R.; Hagen, T. R.; Lie, K., Simulation and visualization of the Saint-Venant system using GPUs, Comput Vis Sci, 13, 7, 341-353 (2010) · Zbl 1273.76338
[18] Acuña, M.; Aoki, T., Real-time tsunami simulation on multi-node GPU cluster, ACM/IEEE conference on supercomputing (2009)
[19] Dutykh, D.; Poncet, R.; Dias, F., The VOLNA code for the numerical modeling of tsunami waves: Generation, propagation and inundation, Eur J Mech - B/Fluids, 30, 6, 598-615 (2011) · Zbl 1258.76036
[20] Reguly, I. Z.; Giles, D.; Gopinathan, D.; Quivy, L.; Beck, J. H.; Giles, M. B.; Guillas, S.; Dias, F., The VOLNA-OP2 tsunami code (version 1.5), Geosci Model Dev, 11, 11, 4621-4635 (2018)
[21] Poncet, R., A Study of the Tsunami Effects of Two Landslides in the St. Lawrence Estuary, (Mosher, D. C.; etal., Submarine Mass Movements and Their Consequences (2010), Springer, Netherlands), 755-764
[22] Dias, F., On the Modelling of Tsunami Generation and Tsunami Inundation, Procedia IUTAM, 10, 338-355 (2014)
[23] Giles, D.; McConnell, B.; Dias, F., Modelling with Volna-OP2-Towards Tsunami Threat Reduction for the Irish Coastline, Geosciences, 10, 226 (2020)
[24] Gopinathan, D.; Venugopal, M.; Roy, D.; Rajendran, K.; Guillas, S.; Dias, F., Uncertainties in the 2004 Sumatra-Andaman source through nonlinear stochastic inversion of tsunami waves, Proc R Soc A, 473, 20170353 (2017) · Zbl 1402.86002
[25] Stefanakis, T. S., Can small islands protect nearby coasts from tsunamis? An active experimental design approach, Proc R Soc A, 470, 20140575 (2014) · Zbl 1371.86015
[26] Beck, J.; Guillas, S., Sequential Design with Mutual Information for Computer Experiments (MICE): Emulation of a Tsunami Model, SIAM/ASA J Uncertain Quantif, 4, 1, 739-766 (2016) · Zbl 1349.62364
[27] Guillas, S.; Sarri, A.; Day, S. J.; Liu, X.; Dias, F., Functional emulation of high resolution tsunami modelling over Cascadia, Ann Appl Stat, 12, 4, 2023-2053 (2018) · Zbl 1411.62337
[28] Salmanidou, D. M.; Guillas, S.; Georgiopoulou, A.; Dias, F., Statistical emulation of landslide-induced tsunamis at the Rockall Bank, NE Atlantic, Proc R Soc A, 473, 20170026 (2017) · Zbl 1404.86008
[29] Liu, X.; Guillas, S., Dimension Reduction for Gaussian Process Emulation: An Application to the Influence of Bathymetry on Tsunami Heights, SIAM/ASA J Uncertain Quantif, 5, 1, 787-812 (2017) · Zbl 1403.62217
[30] Popinet, S., A quadtree-adaptive multigrid solver for the Serre-Green-Naghdi equations, J Comput Phys, 302, 336-358 (2015) · Zbl 1349.76377
[31] Glimsdal, S.; Pedersen, G. K.; Harbitz, C. B.; Løvholt, F., Dispersion of tsunamis: does it really matter?, Nat Hazards Earth Syst Sci, 13, 1507-1526 (2013)
[32] Mudalige, G. R.; Giles, M. B.; Reguly, I.; Bertolli, C.; Kelly, P. H.J., OP2: An active library framework for solving unstructured mesh-based applications on multi-core and many-core architectures, 2012 Innovative Parallel Computing (InPar), 1-12 (2012), San Jose, CA
[33] Brocchini, M., An efficient solver for nearshore flows based on the WAF method, Coastal Eng, 43, 2, 105-129 (2001)
[34] Harten, A.; Lax, P. D.; van Leer, B., On Upstream Differencing and Godunov-Type Schemes for Hyperbolic Conservation Laws, SIAM Rev, 25, 1, 35-61 (1983) · Zbl 0565.65051
[35] Zhou, J. G., Numerical solutions of the shallow water equations with discontinuous bed topography, Internat J Numer Methods Fluids, 38, 769-788 (2002) · Zbl 1040.76045
[36] Howen, P. J.V. D.; Sommeijer, B. P., Explicit Runge-Kutta (-Nyström) Methods with Reduced Phase Errors for Computing Oscillating Solutions, SIAM J Numer Anal, 24, 3, 595-617 (1987) · Zbl 0624.65058
[37] Barth, T. J.; Jespersen, D. C., The design and application of upwind schemes on unstructured meshes, 27th Aerospace Sciences Meeting (1989)
[38] Thacker, W. C., Some exact solutions to the nonlinear shallow water wave equations, J Fluid Mech, 107, 499-508 (1981) · Zbl 0462.76023
[39] Delestre, O., SWASHES: a compilation of shallow-water analytic solutions for hydraulic and environmental studies, Int J Numer Methods Fluids, 72, 269-300 (2013) · Zbl 1455.76005
[40] Lax, P. D.; Richtmyer, R. D., Survey of the stability of linear finite difference equations, Commun Pure Appl Math, 9, 267-293 (1956) · Zbl 0072.08903
[41] Burwell, D.; Tolkova, E.; Chawla, A., Diffusion and dispersion characterization of a numerical tsunami model, Ocean Model, 19, 10-30 (2007)
[42] Salmanidou, D. M.; Georgiopoulou, A.; Guillas, S.; Dias, F., Rheological considerations for the modelling of submarine sliding at the Rockall Bank, NE Atlantic Ocean, Phys Fluids, 30, 030705 (2018)
[43] Georgiopoulou, A.; Shannon, P. M.; Sacchetti, F.; Haughton, P. D.; Benetti, S., Basement-controlled multiple slope collapses, Rockall Bank Slide Complex, NE Atlantic, Mar Geol, 336, 198-214 (2013)
[44] Kelfoun, K.; Druitt, T. H., Numerical modeling of the emplacement of Socompa rock avalanche, Chile, J Geophys Res, 110 (2005)
[45] LeVeque, R. J., Finite Difference Methods for Ordinary and Partial Differential Equations: Steady-State and Time-Dependent Problems, Society for Industrial and Applied Mathematics (2007) · Zbl 1127.65080
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.