×

Non-parametric learning of embeddings for relational data using Gaifman locality theorem. (English) Zbl 1524.68270

Katzouris, Nikos (ed.) et al., Inductive logic programming. 30th international conference, ILP 2021, virtual event, October 25–27, 2021. Proceedings. Cham: Springer. Lect. Notes Comput. Sci. 13191, 95-110 (2022).
Summary: We consider the problem of full model learning from relational data. To this effect, we construct embeddings using symbolic trees learned in a non-parametric manner. The trees are treated as a decision-list of first order rules that are then partially grounded and counted over local neighborhoods of a Gaifman graph to obtain the feature representations. We propose the first method for learning these relational features using a Gaifman graph by using relational tree distances. Our empirical evaluation on real data sets demonstrates the superiority of our approach over handcrafted rules, classical rule-learning approaches, the state-of-the-art relational learning methods and embedding methods.
For the entire collection see [Zbl 1516.68017].

MSC:

68T05 Learning and adaptive systems in artificial intelligence
Full Text: DOI

References:

[1] Blockeel, H.; De Raedt, L., Top-down induction of first-order logical decision trees, Artif. Intell., 101, 285-297 (1998) · Zbl 0909.68034 · doi:10.1016/S0004-3702(98)00034-4
[2] Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J., Yakhnenko, O.: Translating embeddings for modeling multi-relational data. In: NIPS (2013)
[3] Cai, H., Zheng, V.W., Chang, K.C.: A comprehensive survey of graph embedding: problems, techniques, and applications. In: IEEE TKDE (2018)
[4] De Campos, C.P., Zeng, Z., Ji, Q.: Structure learning of Bayesian networks using constraints. In: ICML (2009)
[5] Dettmers, T., Minervini, P., Stenetorp, P., Riedel, S.: Convolutional 2D knowledge graph embeddings. In: AAAI (2018)
[6] Dhami, DS; Kunapuli, G.; Das, M.; Page, D.; Natarajan, S., Drug-drug interaction discovery: kernel learning from heterogeneous similarities, Smart Health, 9-10, 88-100 (2018) · doi:10.1016/j.smhl.2018.07.007
[7] Dong, Y., Chawla, N.V., Swami, A.: metapath2vec: scalable representation learning for heterogeneous networks. In: KDD (2017)
[8] Gaifman, H., On local and non-local properties, Stud. Logic Found. Math., 107, 105-135 (1982) · Zbl 0518.03008 · doi:10.1016/S0049-237X(08)71879-2
[9] Getoor, L., Taskar, B.: Intro to Statistical Relational Learning. MIT press (2007) · Zbl 1141.68054
[10] Ji, G., He, S., Xu, L., Liu, K., Zhao, J.: Knowledge graph embedding via dynamic mapping matrix. In: ACL-IJCNLP (2015)
[11] Kaur, N., Kunapuli, G., Khot, T., Kersting, K., Cohen, W., Natarajan, S.: Relational restricted Boltzmann machines: a probabilistic logic learning approach. In: ILP (2017) · Zbl 1455.68171
[12] Kazemi, S.M., Poole, D.: Simple embedding for link prediction in knowledge graphs. In: NeurIPS (2018)
[13] Khot, T., Natarajan, S., Kersting, K., Shavlik, J.: Learning Markov logic networks via functional gradient boosting. In: ICDM (2011) · Zbl 1346.68159
[14] Khot, T., Natarajan, S., Shavlik, J.W.: Relational one-class classification: a non-parametric approach. In: AAAI (2014)
[15] Kok, S., et al.: The alchemy system for statistical relational \(\{\) AI \(\} (2009)\)
[16] Lao, N.; Cohen, WW, Relational retrieval using a combination of path-constrained random walks, Mach. Learn., 81, 53-67 (2010) · Zbl 1470.68130 · doi:10.1007/s10994-010-5205-8
[17] Lin, Y., Liu, Z., Sun, M., Liu, Y., Zhu, X.: Learning entity and relation embeddings for knowledge graph completion. In: AAAI (2015)
[18] Mitchell, T.; Cohen, W., Never-ending learning, ACM Commun., 61, 103-115 (2018) · doi:10.1145/3191513
[19] Muggleton, S., Inverse entailment and progol, New Gener. Comput., 13, 245-286 (1995) · doi:10.1007/BF03037227
[20] Natarajan, S.; Khot, T.; Kersting, K.; Gutmann, B.; Shavlik, J., Gradient-based boosting for statistical relational learning: the relational dependency network case, Mach. Learn., 100, 75-100 (2015) · Zbl 1243.68245 · doi:10.1007/s10994-015-5481-4
[21] Nickel, M., Rosasco, L., Poggio, T.A., et al.: Holographic embeddings of knowledge graphs. In: AAAI (2016)
[22] Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: NIPS (2017)
[23] Niepert, M.: Discriminative Gaifman models. In: NIPS (2016)
[24] Niu, F., Ré, C., Doan, A., Shavlik, J.: Tuffy: scaling up statistical inference in Markov Logic Networks using an RDBMS. In: VLDB (2011)
[25] Raedt, L.D., Kersting, K., Natarajan, S., Poole, D.: Statistical Relational Artificial Intelligence: Logic, Probability, and Computation. Synthesis Lectures on AI and ML (2016) · Zbl 1352.68005
[26] Srinivasan, A.: The Aleph manual (2001)
[27] Taskar, B., Wong, M.F., Abbeel, P., Koller, D.: Link prediction in relational data. In: NIPS (2004)
[28] Trouillon, T., Welbl, J., Riedel, S., Gaussier, É., Bouchard, G.: Complex embeddings for simple link prediction. In: ICML (2016) · Zbl 1435.68323
[29] Walker T., et al.: ILP for bootstrapped learning: a layered approach to automating the ILP setup problem. In: ILP (2009)
[30] Wang, Z., Zhang, J., Feng, J., Chen, Z.: Knowledge graph embedding by translating on hyperplanes. In: AAAI (2014)
[31] Yang, B., Yih, W., He, X., Gao, J., Deng, L.: Embedding entities and relations for learning and inference in knowledge bases. In: ICLR (2015)
[32] Yang, F., Yang, Z., Cohen, W.W.: Differentiable learning of logical rules for knowledge base reasoning. In: NeurIPS (2017)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.