×

\(L^2\)-Betti numbers and computability of reals. (English) Zbl 07737094

Summary: We study the computability degree of real numbers arising as \(L^2\)-Betti numbers or \(L^2\)-torsion of groups, parametrised over the Turing degree of the word problem.

MSC:

03Dxx Computability and recursion theory

Software:

mathlib

References:

[1] M.F. Atiyah, Elliptic operators, discrete groups and von Neumann algebras, in: Colloque “Analyse et Topolo-gie” en l’honneur de Henri Cartan, Société Mathématique de France (SMF), 1976, pp. 43-72. · Zbl 0323.58015
[2] T. Austin, Rational group ring elements with kernels having irrational dimension, Proc. Lond. Math. Soc. (3) 107(6) (2013), 1424-1448. doi:10.1112/plms/pdt029. · Zbl 1295.20041 · doi:10.1112/plms/pdt029
[3] J. Avigad, L. de Moura and S. Kong, Theorem proving in Lean, 2021. Release 3.23.0, https:// leanprover.github.io/theorem_proving_in_lean/.
[4] W.E. Egbert, Personal calculator algorithms IV: Logarithmic functions, Hewlett-Packard Journal 4 (1978), 29-32.
[5] G. Elek and E. Szabó, Hyperlinearity, essentially free actions and L 2 -invariants. The sofic property, Math. Ann. 332(2) (2005), 421-441. doi:10.1007/s00208-005-0640-8. · Zbl 1070.43002 · doi:10.1007/s00208-005-0640-8
[6] G. Elek and E. Szabó, On sofic groups, J. Group Theory 9(2) (2006), 161-171. doi:10.1515/JGT.2006. 011. · Zbl 1153.20040 · doi:10.1515/JGT.2006.011
[7] F. Fournier-Facio, C. Löh and M. Moraschini, Bounded cohomology of finitely presented groups: Vanishing, non-vanishing, and computability, Annali della Scuola Normale Superiore di Pisa (2021), to appear.
[8] Ł. Grabowski, On Turing dynamical systems and the Atiyah problem, Invent. Math. 198(1) (2014), 27-69. doi:10.1007/s00222-013-0497-5. · Zbl 1354.20026 · doi:10.1007/s00222-013-0497-5
[9] Ł. Grabowski, Vanishing of l 2 -cohomology as a computational problem, Bull. Lond. Math. Soc. 47(2) (2015), 233-247. doi:10.1112/blms/bdu114. · Zbl 1433.57010 · doi:10.1112/blms/bdu114
[10] P.A. Griffith, Infinite Abelian Group Theory, University of Chicago Press, Chicago, Ill.-London, 1970. · Zbl 0204.35001
[11] T. Groth, l 2 -Bettizahlen endlich präsentierter Gruppen, BSc thesis, Universität Göttingen, 2012.
[12] N. Heuer, The full spectrum of scl on recursively presented groups, Geometricae Dedicata (2019), to appear.
[13] N. Heuer and C. Löh, Transcendental simplicial volumes, Annales de l’Institut Fourier (2021), to appear.
[14] H. Kammeyer, Introduction to 2 -Invariants, Springer, 2019. · Zbl 1458.55001
[15] R.C. Kirby and L.C. Siebenmann, On the triangulation of manifolds and the Hauptvermutung, Bull. Amer. Math. Soc. 75 (1969), 742-749. doi:10.1090/S0002-9904-1969-12271-8. · Zbl 0189.54701 · doi:10.1090/S0002-9904-1969-12271-8
[16] P.A. Linnell, Division rings and group von Neumann algebras, Forum Math. 5(6) (1993), 561-576. · Zbl 0794.22008
[17] C. Löh and M. Uschold, L 2 -Betti numbers and computability of reals -Lean project. https://gitlab. com/L2-comp/l2-comp-lean, 2022.
[18] C. Löh and M. Uschold, L 2 -Betti numbers and computability of reals, 2022, arXiv:2202.03159v2.
[19] W. Lück, Approximating L 2 -invariants by their finite-dimensional analogues, Geom. Funct. Anal. 4(4) (1994), 455-481. doi:10.1007/BF01896404. · Zbl 0853.57021 · doi:10.1007/BF01896404
[20] W. Lück, L 2 -Invariants: Theory and Applications to Geometry and K-Theory, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics], Vol. 44, Springer, 2002. · Zbl 1009.55001
[21] C.F. Miller III, Decision problems for groups -survey and reflections, in: Algorithms and Classification in Combinatorial Group Theory. Lectures of a Workshop on Algorithms, Word Problems and Classification in Combinatorial Group Theory, Held at MSRI, Berkeley, CA, USA, January 1989, Springer-Verlag, 1989, pp. 1-59. · Zbl 0752.20014
[22] A. Nabutovsky and S. Weinberger, Betti numbers of finitely presented groups and very rapidly growing func-tions, Topology 46(2) (2007), 211-223. doi:10.1016/j.top.2007.02.002. · Zbl 1139.20030 · doi:10.1016/j.top.2007.02.002
[23] C. Neoftyidis, S. Wang and Z. Wang, Realising sets of integers as mapping degree sets, Bulletin of the London Mathematical Society (2023), doi:10.1112/blms.12813. · Zbl 1529.55002 · doi:10.1112/blms.12813
[24] B.H. Neumann and H. Neumann, Embedding theorems for groups, Journal of the London Mathematical Soci-ety s1-34(4) (1959), 465-479. doi:10.1112/jlms/s1-34.4.465. · Zbl 0102.26401 · doi:10.1112/jlms/s1-34.4.465
[25] M. Pichot, T. Schick and A. Zuk, Closed manifolds with transcendental L 2 -Betti numbers, J. Lond. Math. Soc., II. Ser. 92(2) (2015), 371-392. doi:10.1112/jlms/jdv026. · Zbl 1347.20045 · doi:10.1112/jlms/jdv026
[26] R. Rettinger and X. Zheng, Computability of real numbers, in: Handbook of Computability and Complexity in Analysis, Springer, Cham, 2021, pp. 3-28. doi:10.1007/978-3-030-59234-9_1. · Zbl 07464639 · doi:10.1007/978-3-030-59234-9_1
[27] J.J. Rotman, An Introduction to the Theory of Groups, Graduate Texts in Mathematics, Vol. 148, Springer-Verlag, 1995. · Zbl 0810.20001
[28] T. Schick, L 2 -Determinant class and approximation of L 2 -Betti numbers, Trans. Am. Math. Soc. 353(8) (2001), 3247-3265. doi:10.1090/S0002-9947-01-02699-X. · Zbl 0979.55004 · doi:10.1090/S0002-9947-01-02699-X
[29] L.C. Siebenmann, On the homotopy type of compact topological manifolds, Bull. Amer. Math. Soc. 74 (1968), 738-742. doi:10.1090/S0002-9904-1968-12022-1. · Zbl 0165.56703 · doi:10.1090/S0002-9904-1968-12022-1
[30] S.G. Simpson, Degrees of unsolvability: A survey of results, Barewise, Jon, 1977, pp. 631-652.
[31] The mathlib Community. The Lean Mathematical Library. Proceedings of the 9th ACM SIGPLAN International Conference on Certified Programs and Proofs (CPP ’2), 2020.
[32] X. Zheng, On the Turing degrees of weakly computable real numbers, J. Log. Comput. 13(2) (2003), 159-172. doi:10.1093/logcom/13.2.159. · Zbl 1054.03040 · doi:10.1093/logcom/13.2.159
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.