×

Modeling cesium migration through Opalinus clay: a benchmark for single- and multi-species sorption-diffusion models. (English) Zbl 1473.86005

Summary: Sophisticated modeling of the migration of sorbing radionuclides in compacted claystones is needed for supporting the safety analysis of deep geological repositories for radioactive waste, which requires robust modeling tools/codes. Here, a benchmark related to a long term laboratory scale diffusion experiment of cesium, a moderately sorbing radionuclide, through Opalinus clay is presented. The benchmark was performed with the following codes: \(\mathrm{CORE^{2D}}\)V5, Flotran, COMSOL Multiphysics, OpenGeoSys-GEM, MCOTAC and PHREEQC v.3. The migration setup was solved with two different conceptual models, i) a single-species model by using a look-up table for a cesium sorption isotherm and ii) a multi-species diffusion model including a complex mechanistic cesium sorption model. The calculations were performed for three different cesium boundary concentrations (\(10^{-3}\), \(10^{-5}\), \(10^{-7}\) mol / L) to investigate the models/codes capabilities taking into account the nonlinear sorption behavior of cesium. Generally, good agreement for both single- and multi-species benchmark concepts could be achieved, however, some discrepancies have been identified, especially near the boundaries, where code specific spatial (and time) discretization had to be improved to achieve better agreement at the expense of longer computation times. In addition, the benchmark exercise yielded useful information on code performance, setup options, input and output data management, and post processing options. Finally, the comparison of single-species and multi-species model concepts showed that the single-species approach yielded generally earlier breakthrough, because this approach accounts neither for cation exchange of \(\mathrm{Cs}^+\) with \(\mathrm{K}^+\) and \(\mathrm{Na}^+\), nor \(\mathrm{K}^+\) and \(\mathrm{Na}^+\) diffusion in the pore water.

MSC:

86-08 Computational methods for problems pertaining to geophysics
76R50 Diffusion
86-04 Software, source code, etc. for problems pertaining to geophysics
74L10 Soil and rock mechanics

References:

[1] Rosanne, M.; Mammar, N.; Koudina, N.; Prunet-Foch, B.; Thovert, JF; Tevissen, E.; Adler, PM, Transport properties of compacted clays-II. Diffusion, J. Colloid Interface Sci., 260, 195-203 (2003) · doi:10.1016/S0021-9797(02)00240-0
[2] Van Loon, LR; Soler, JM; Bradbury, MH, Diffusion of HTO,^36Cl^− and^125I^− in Opalinus clay samples from Mont Terri - effect of confining pressure, J. Contam. Hydrol., 61, 73-83 (2003) · doi:10.1016/S0169-7722(02)00114-6
[3] Van Loon, LR; Soler, JM; Jakob, A.; Bradbury, MH, Effect of confining pressure on the diffusion of HTO,^36Cl^−, and^125I^− in a layered argillaceous rock (Opalinus clay): diffusion perpendicular to the fabric, Appl. Geochem., 18, 1653-1662 (2003) · doi:10.1016/S0883-2927(03)00047-7
[4] Van Loon, L.R., Soler, J.M.: Diffusion of HTO,^36Cl^−,^125I^− and^22Na^+ in Opalinus clay: effect of confining pressure, sample orientation, sample depth and temperature. PSI Bericht No. 04-03. Paul Scherrer Institut, Villigen PSI, Switzerland (2004)
[5] Van Loon, LR; Soler, JM; Müller, W.; Bradbury, MH, Anisotropic diffusion in layered argillaceous rocks: a case study with Opalinus clay, Environ. Sci. Technol., 38, 21, 5721-5728 (2004) · doi:10.1021/es049937g
[6] Melkior, T.; Yahiaoui, S.; Motellier, S.; Thoby, D.; Tevissen, E., Cesium sorption and diffusion in Bure mudrock samples, Appl. Clay Sci., 29, 172-186 (2005) · doi:10.1016/j.clay.2004.12.008
[7] Palut, JM; Montarnal, P.; Gautschi, A.; Tevissen, E.; Mouche, E., Characterisation of HTO diffusion properties by an in situ tracer experiment in Opalinus clay at Mont Terri, J. Contam. Hydrol., 61, 203-218 (2003) · doi:10.1016/S0169-7722(02)00134-1
[8] Tevissen, E.; Soler, JM; Montarnal, P.; Gautschi, A.; Van Loon, LR, Comparison between in situ and laboratory diffusion studies of HTO and halides in Opalinus clay from the Mont Terri, Radiochim. Acta, 92, 781-786 (2004) · doi:10.1524/ract.92.9.781.54989
[9] Cartalade, A.; Montarnal, P.; Filippi, M.; Mugler, C.; Lamoureux, M.; Martinez, JM; Clément, F.; Wileveau, Y.; Coelho, D.; Tevissen, E., Application of inverse modeling methods to thermal and diffusion experiments at Mont Terri rock laboratory, Phys. Chem. Earth, 32, 491-506 (2007) · doi:10.1016/j.pce.2006.08.043
[10] Leupin, OX; Van Loon, LR; Gimmi, T.; Wersin, P.; Soler, JM, Exploring diffusion and sorption processes at the Mont Terri rock laboratory (Switzerland): lessons learned from 20 years of field research, Swiss J. Geosci., 110, 391-403 (2017) · doi:10.1007/s00015-016-0254-z
[11] Jakob, A.; Pfingsten, W.; Van Loon, L., Effects of sorption competition on caesium diffusion through compacted argillaceous rock, Geochim. Cosmochim. Acta, 73, 2441-2456 (2009) · doi:10.1016/j.gca.2009.01.028
[12] Suzuki, S.; Haginuma, M.; Suzuki, K., Study of sorption and diffusion of^137Cs in compacted Bentonite saturated with saline water at 60°C, Nuclear Science and Technology., 44, 81-89 (2007) · doi:10.1080/18811248.2007.9711259
[13] Kosakowski, G.; Churakov, S.; Thoenen, T., Diffusion of Na and Cs in montmorillonite, Clay Clay Miner., 56, 2, 190-206 (2008) · doi:10.1346/CCMN.2008.0560205
[14] Maes, N., Salah, S., Jacques, D., Aertsens, M., Van Gompel, M., De Cannière, P., Velitchkova, N. : Retention of Cs in Boom Clay: Comparison of data from batch sorption tests and diffusion experiments on intact clay cores. Physics and Chemistry of the Earth, Parts A/B/C, 33(Supplement 1), S149-S155 (2008)
[15] Wersin, P.; Soler, JM; Van Loon, L.; Eikenberg, J.; Baeyens, B.; Grolimund, D.; Gimmi, T.; Dewonck, S., Diffusion of HTO, Br^−, I^−, Cs^+,^85Sr^2+ and^60Co^2+ in a clay formation: results and modelling from an in situ experiment in Opalinus clay, Appl. Geochem., 23, 678-691 (2008) · doi:10.1016/j.apgeochem.2007.11.004
[16] Van Loon, LR; Baeyens, B.; Bradbury, MH, The sorption behaviour of caesium on Opalinus clay: a comparison between intact and crushed material, Appl. Geochem., 24, 999-1004 (2009) · doi:10.1016/j.apgeochem.2009.03.003
[17] Shackelford, CD, Laboratory diffusion testing for waste disposal - a review, J. Contam. Hydrol., 7, 177-217 (1991) · doi:10.1016/0169-7722(91)90028-Y
[18] Eriksen, T.E. and Jansson, M.: Diffusion of I^−, Cs^+ and Sr^2+ in compacted bentonite - anion exclusion and surface diffusion. SKB technical report 96-16, Swedish Nuclear Fuel and Waste Management Co., Stockholm, Sweden (1996)
[19] Kau, PMH; Binning, PJ; Hitchcock, PW; Smith, DW, Experimental analysis of fluoride diffusion and sorption in clays, J. Contam. Hydrol., 36, 131-151 (1999) · doi:10.1016/S0169-7722(98)00140-5
[20] Ochs, M.; Lothenbach, B.; Wanner, H.; Sato, H.; Yui, M., An integrated sorption-diffusion model for the calculation of consistent distribution and diffusion coefficients in compacted bentonite, J. Contam. Hydrol., 47, 283-296 (2001) · doi:10.1016/S0169-7722(00)00157-1
[21] Yllera, A.; Hernandez, A.; Mingarro, M.; Quejido, A.; Sedano, LA; Soler, JM; Samper, J.; Molinero, J.; Barcala, JM; Martin, PL; Fernandez, M.; Wersin, P.; Rivas, P.; Hernan, P., DI-B experiment: planning, design and performance of an in situ diffusion experiment in the Opalinus clay formation, Appl. Clay Sci., 26, 181-196 (2004) · doi:10.1016/j.clay.2003.12.007
[22] Xia, X.; Iijima, K.; Kamei, G.; Shibata, M., Comparative study of cesium sorption on crushed and intact sedimentary rock, Radiochim. Acta, 94, 683-687 (2006) · doi:10.1524/ract.2006.94.9-11.683
[23] Soler, JM; Samper, J.; Yllera, A.; Hernandez, A.; Quejido, A.; Fernández, M., The DI-B in situ diffusion experiment at Mont Terri: results and modeling, Phys. Chem. Earth, 33, S196-S207 (2008) · doi:10.1016/j.pce.2008.10.010
[24] Van Loon, LR; Wersin, P.; Soler, JM; Eikenberg, J.; Gimmi, T.; Hernan, P.; Dewonck, S.; Savoye, S., In-situ diffusion of HTO, 22Na+−, Cs+ and I- in Opalinus clay at the Mont Terri underground rock laboratory, Radiochim. Acta, 92, 757-776 (2004) · doi:10.1524/ract.92.9.757.54988
[25] Wersin, P.; Van Loon, LR; Soler, JM; Yllera, A.; Eikenberg, J., Gimmi, Th, Hernan, P., Boisson, J.-Y.: long-term diffusion experiment at Mont Terri: first results from field and laboratory data, Appl. Clay Sci., 26, 123-135 (2004) · doi:10.1016/j.clay.2003.09.007
[26] Malusis, MA; Shackelford, CD, Theory for reactive solute transport through clay membrane barriers, J. Contam. Hydrol., 59, 291-316 (2002) · doi:10.1016/S0169-7722(02)00041-4
[27] Bourg, IC; Sposito, G.; Bourg, ACM, Tracer diffusion in compacted, water-saturated bentonite, Clays Clay Mineral., 54, 363-374 (2006) · doi:10.1346/CCMN.2006.0540307
[28] Appelo, CA; Wersin, P., Multicomponent diffusion modelling in clay systems with application to the diffusion of tritium, iodide, and sodium in Opalinus clay, Environ. Sci. Technol., 41, 5002-5007 (2007) · doi:10.1021/es0629256
[29] Appelo, CA; Van Loon, LR; Wersin, P., Multicomponent diffusion of a suite of tracers (HTO, Cl, Br, I, Na, Sr, Cs) in a single sample of Opalinus clay, Geochim. Cosmochim. Acta, 74, 1201-1219 (2010) · doi:10.1016/j.gca.2009.11.013
[30] Soler, JM; Wersin, P.; Leupin, OX, Modeling of Cs+ diffusion and retention in the DI-A2 experiment (Mont Terri), Uncertainties in sorption and diffusion parameters. Applied Geochemistry, 33, 191-198 (2013)
[31] Soler, J.M., Leupin, O. X., Gimmi, T., Van Loon, L. R.: The DR-A in situ diffusion experiment at Mont Terri: Effects of changing salinity on diffusion and retention properties. In Proceedings of the Materials Research Society Symposium, 1665, 63-69. Cambridge University Press (2014)
[32] Van Loon, LR; Müller, W., A modified version of the combined in-diffusion/abrasive peeling technique for measuring diffusion of strongly sorbing radionuclides in argillaceous rocks: a test study on the diffusion of caesium in Opalinus clay, Appl. Radiat. Isot., 90, 197-202 (2014) · doi:10.1016/j.apradiso.2014.04.009
[33] Yi, S.; Samper, J.; Naves, A.; Soler, JM, A single-site reactive transport model of Cs^+ for the in situ diffusion and retention (DR) experiment, Environ. Earth Sci., 74, 3589-3601 (2015) · doi:10.1007/s12665-015-4419-2
[34] Cherif, MA; Martin-Garina, A.; Gérard, F.; Bildstein, O., Appl. Geochem., 87, Supplement C, 22-37 (2017) · doi:10.1016/j.apgeochem.2017.10.017
[35] Tournassat, C., Steefel, C.I., Bourg, I.C., Bergaya, F. (ed): Natural and engineered clay barriers, 6, 5-432 (2015)
[36] Wolfsberg, AV; Freyberg, DL, Efficient simulation of single species and multispecies transport in groundwater with local adaptive grid refinement, Water Resour. Res., 30, 11, 2979-2991 (1994) · doi:10.1029/93WR02749
[37] Bradbury, MH; Baeyens, B., A generalised sorption model for the concentration dependent uptake of caesium by argillaceous rocks, J. Contam. Hydrol., 42, 141-163 (2000) · doi:10.1016/S0169-7722(99)00094-7
[38] Pfingsten, W.: Modular coupling of transport and chemistry: theory and model applications. PSI Bericht No. 94-15. Paul Scherrer Institut, Villigen PSI, Switzerland and Nagra technical report 94-19. Nagra, Wettingen, Switzerland (1994)
[39] Pfingsten, W., Experimental and modelling indications for self-sealing of a cementitious low- and intermediate-level waste repository by calcite precipitation, Nucl. Technol., 140, 63-82 (2002) · doi:10.13182/NT02-A3324
[40] Pfingsten, W.: MCOTAC 2005. PSI internal report AN-44- 05-07. Paul Scherrer Institut, Villigen PSI, Switzerland (2005) (in German)
[41] Bradbury, MH; Baeyens, B., A physicochemical characterisation and geochemical modelling approach for determining porewater chemistries in argillaceous rocks, Geochim. Cosmochim. Acta, 62, 5, 783-795 (1998) · doi:10.1016/S0016-7037(97)00387-6
[42] Stumm, W., Morgan, J.J: Aquatic chemistry, Third edition, John Wiley & Sons, Inc., New York (1996)
[43] Gaines, LG; Thomas, CH, Adsorption studies on clay minerals. II. A formulation of the thermodynamics of exchange adsorption, J. Chem. Phys., 21, 714-718 (1953) · doi:10.1063/1.1698996
[44] Samper, J.; Xu, T.; Yang, C., A sequential partly iterative approach or multicomponent reactive transport with CORE^2D, Comput. Geosci., 13, 301-316 (2009) · Zbl 1338.76066 · doi:10.1007/s10596-008-9119-5
[45] Samper, J., Yang, C., Zheng, L., Montenegro, L., Xu, T., Dai, Z., Zhang, G., Lu, C., Moreira, S.: CORE^2DV4: a code for water flow, heat and solute transport, geochemical reactions, and microbial processes. In: Zhang F., Yeh G.T, Parker C., Shi X. (eds.) Chapter 7 of the Electronic Book Groundwater Reactive Transport Models, pp. 161-186. Bentham Science, ISBN 978-1-60805-029-1 (2011)
[46] Xu, T.; Samper, J.; Ayora, C.; Manzano, M.; Custodio, E., Modeling of non isothermal multicomponent reactive transport in field scale porous media flow systems, J. Hydrol., 214, 144-164 (1999) · doi:10.1016/S0022-1694(98)00283-2
[47] Águila, J.F.: Reactive transport models of low permeability structured porous and fractured media. PhD Dissertation. University of A Coruña, Spain. p. 531 (2017). http://hdl.handle.net/2183/20232
[48] Águila, JF; Samper, J.; Mon, A.; Montenegro, L., Dynamic update of flow and transport parameters in reactive transport simulations of radioactive waste repositories, Appl. Geochem., 117, 104585 (2020) · doi:10.1016/j.apgeochem.2020.104585
[49] Poonoosamy, J., Wanner, C., Alt Epping, P., Águila, J.F., Samper, J., Montenegro, L., Xie, M., Su, D., Mayer, K.U., Mäder, U., Van Loon, L.R., Kosakowski, G.: Benchmarking of reactive transport codes for 2D simulations with mineral dissolution-precipitation reactions and feedback on transport parameters. Comput. Geosci. (2018). doi:10.1007/s10596-018-9793-x · Zbl 1473.76058
[50] Zheng, L.; Samper, J., Coupled THMC model of FEBEX mock-up test, Phys. Chem. Earth, 33, 486-498 (2008) · doi:10.1016/j.pce.2008.10.023
[51] Yang, C.; Samper, J.; Molinero, J., Inverse microbial and geochemical reactive transport models in porous media, Phys. Chem. Earth, 33, 12-13, 1026-1034 (2008) · doi:10.1016/j.pce.2008.05.016
[52] Zheng, L.; Samper, J.; Montenegro, L.; Fernández, AM, A coupled THMC model of a heating and hydration laboratory experiment in unsaturated compacted FEBEX bentonite, J. Hydrol., 386, 80-94 (2010) · doi:10.1016/j.jhydrol.2010.03.009
[53] Zheng, L.; Samper, J.; Montenegro, L., A coupled THC model of the FEBEX in situ test with bentonite swelling and chemical and thermal osmosis, J. Contam. Hydrol., 126, 45-60 (2011) · doi:10.1016/j.jconhyd.2011.06.003
[54] Samper, J.; Mon, A.; Montenegro, L., A revisited thermal, hydrodynamic, chemical and mechanical model of compacted bentonite for the entire duration of the FEBEX in situ test, Applied Clay Sciences, 160, 58-70 (2018) · doi:10.1016/j.clay.2018.02.019
[55] Samper, J.; Zheng, L.; Montenegro, L.; Fernandez, AM; Rivas, P., Coupled thermo-hydro-chemical models of compacted bentonite after FEBEX in situ test, Appl. Geochem., 23, 5, 1186-1201 (2008) · doi:10.1016/j.apgeochem.2007.11.010
[56] Samper, J.; Lu, C.; Montenegro, L., Reactive transport model of interactions of corrosion products and bentonite, Phys. Chem. Earth, 33, S306-S316 (2008) · doi:10.1016/j.pce.2008.10.009
[57] Lu, C.; Samper, J.; Fritz, B.; Clement, A.; Montenegro, L., Interactions of corrosion products and bentonite: an extended multicomponent reactive transport model, Physics and Chemistry of the Earth, Parts A/B/C, 36, 1661-1668 (2011) · doi:10.1016/j.pce.2011.07.013
[58] Samper, J.; Naves, A.; Montenegro, L.; Mon, A., Reactive transport modelling of the long-term interactions of corrosion products and compacted bentonite in a HLW repository in granite: uncertainties and relevance for performance assessment, Appl. Geochem., 67, 42-51 (2016) · doi:10.1016/j.apgeochem.2016.02.001
[59] Mon, A.; Samper, J.; Montenegro, L.; Naves, A.; Fernández, J., Long-term non-isothermal reactive transport model of compacted bentonite, concrete and corrosion products in a HLW repository in clay, J Cont. Hydrol., 197, 1-16 (2017) · doi:10.1016/j.jconhyd.2016.12.006
[60] Kulik, DA; Wagner, T.; Dmytrieva, SV; Kosakowski, G.; Hingerl, FF; Chudnenko, KV; Berner, U., GEM-Selektor geochemical modeling package: revised algorithm and GEMS3k numerical kernel for coupled simulation codes, Comput. Geosci., 17, 1, 1-24 (2013) · Zbl 1356.86022
[61] Shao, H.; Dmytrieva, SV; Kolditz, O.; Kulik, DA; Pfingsten, W.; Kosakowski, G., Modeling reactive transport in non-ideal aqueous-solid solution system, Appl. Geochem., 24, 7, 1287-1300 (2009) · doi:10.1016/j.apgeochem.2009.04.001
[62] Kosakowski, G.; Watanabe, N., OpengeoSys-gem: a numerical tool for calculating geochemical and porosity changes in saturated and partially saturated media, Phys. Chem. Earth, 70-71, 138-149 (2014) · doi:10.1016/j.pce.2013.11.008
[63] Wagner, T.; Kulik, DA; Hingerl, FF; Dmytrieva, SV, GEMSelektor geochemical modeling package: TSolMod C++ class library and data interface for multicomponent phase models, Can. Mineral., 50, 1173-1195 (2012) · doi:10.3749/canmin.50.5.1173
[64] Lichtner, P.C.: Flotran user’s manual: two-phase nonisothermal coupled thermal-hydrological-chemical (THC) reactive flow &transport code, Version 2.0. Los Alamos, New Mexico (2007)
[65] Parkhurst, D.L., Appelo, C.A.J.: Description of input and examples for PHREEQC version 3—A computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations: U.S. Geological Survey Techniques and Methods, book 6, chap. A43, 497 p., (2013) available only at https://pubs.usgs.gov/tm/06/a43/
[66] Pearson, F.J.: Opalinus clay experimental water: A1 type, Version 980318, PSI Technical Report TM-44-98-07, Paul Scherrer Institut, Villigen PSI, Switzerland (1998)
[67] Pearson, F.J., Arcos, D., Bath, A., Boisson, J.-Y., Fernández, A.M., Gable, H.-E., Gaucher, E., Gautschi, A., Griffault, L., Hernán, P., Waber H.N.: Mont Terri Project - Geochemistry of water in the Opalinus clay formation at the Mont Terri rock laboaratory, Berichte des Bundesamt für Wasser und Geologie BWG, Serie Geologie, No. 5, Bern, Schweiz (2003)
[68] Van Loon, LR; Baeyens, B.; Bradbury, MH, Diffusion and retention of sodium and strontium in Opalinus clay: comparison of sorption data from diffusion and batch sorption measurements, and geochemical calculations, Appl. Geochem., 20, 12, 2351-2363 (2005) · doi:10.1016/j.apgeochem.2005.08.008
[69] Gray, WG; Pinder, GF, An analysis of the numerical solution of the transport equation, Water Resour. Res., 12, 547-555 (1976) · doi:10.1029/WR012i003p00547
[70] Boiarkine, O.; Kuzmin, D.; Čanić, S.; Guidoboni, G.; Mikelić, A., A positivity-preserving ALE finite element scheme for convection-diffusion equations in moving domains, J. Comput. Phys., 230, 2896-2914 (2011) · Zbl 1218.65106 · doi:10.1016/j.jcp.2010.12.042
[71] Glaus, MA; Aertsens, M.; Maes, N.; Van Laer, L.; Van Loon, LR, Treatment of boundary conditions in through-diffusion: a case study of^85Sr^2 + diffusion in compacted illite, J. Contam. Hydrol., 177-178, 239-248 (2015) · doi:10.1016/j.jconhyd.2015.03.010
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.