×

Static and dynamic analyses of isogeometric curvilinearly stiffened plates. (English) Zbl 1446.74046

Summary: The isogeometric analysis (IGA) is a new approach which builds a seamless connection between Computer Aided Design (CAD) and Computer Aided Engineering (CAE). This approach which uses the B-Splines or the Non-Uniform Rational B-Splines (NURBS) as a geometric representation of the object is a discretization technology for numerical analysis. The IGA has advantages of capturing exact geometry and making the flexibility of refinement, which results in higher calculation accuracy. To study the static and dynamic characteristics of curvilinearly stiffened plates, the NURBS based isogeometric analysis approach is developed in this paper. We use this approach to analyze the static deformation, the free vibration and the vibration behavior in the presence of in-plane loads of curvilinearly stiffened plates. Furthermore, the large deformation and the large amplitude vibration of the curvilinearly stiffened plates are also studied based on the von Karman’s large deformation theory. One of the superiorities of the present method in the analysis of the stiffened plates is that the element number is much less than commercial finite element software, whereas another advantage is that the mesh refinement process is much more convenient compared with traditional finite element method (FEM). Some numerical examples are shown to validate the correctness and superiority of the present method by comparing with the results from commercial software and finite element analysis.

MSC:

74-10 Mathematical modeling or simulation for problems pertaining to mechanics of deformable solids
74K20 Plates
74S05 Finite element methods applied to problems in solid mechanics

Software:

NURBS; EBF3PanelOpt
Full Text: DOI

References:

[1] Mulani, S. B.; Slemp, W. C.H.; Kapania, R. K., EBF3PanelOpt: an optimization framework for curvilinear blade-stiffened panels, Thin-Walled Struct., 63, 13-26 (2013)
[2] Locatelli, D.; Mulani, S. B.; Kapania, R. K., Wing-box weight optimization using curvilinear spars and ribs (SpaRibs), J. Aircraft, 48, 5, 1671-1684 (2011)
[3] Forster, E.; Clay, S.; Holzwarth, R.; Pratt, D.; Paul, D., Flight vehicle composite structures, (Proceedings of the 26th Congress of International Council of the Aeronautical Sciences (ICAS) (2008)), 2008-8976
[4] Rossow, M. P.; Ibrahimkhail, A. K., Constraint method analysis of stiffened plates, Comput. Struct., 8, 1, 51-60 (1978) · Zbl 0366.73081
[5] Srinivasan, R. S.; Thiruvenkatacharit, V., Static analysis of stiffened plates, AIAA J., 22, 9, 1342-1344 (1984) · Zbl 0585.73090
[6] O’Leary, J. R.; Harari, I., Finite-element analysis of stiffened plates, Comput. Struct., 21, 5, 973-985 (1985) · Zbl 0587.73115
[7] Yukio, U.; Rashed, S. M.H.; Paik, J. K., An incremental Galerkin method for plates and stiffened plates, Comput. Struct., 27, 1, 147-156 (1987) · Zbl 0623.73084
[8] Bedair, O. K., Influence of stiffener location on the stability of stiffened plates under compression and in-plane bending, Int. J. Mech. Sci., 39, 1, 33-49 (1997) · Zbl 0905.73023
[9] Bedair, O. K.; Mikami, I., Ultimate compressive strength of orthogonally stiffened steel plates, J. Struct. Eng., 123, 8, 1116-1119 (1997)
[10] Bedair, O. K., The elastic behaviour of multi-stiffened plates under uniform compression, Thin-Walled Struct., 27, 4, 311-335 (1997)
[11] Bedair, O. K., Recent developments in modeling and design procedures of stiffened plates and shells, Recent Patents Eng., 7, 3, 196-208 (2013)
[12] Olson, M. D.; Hazell, C. R., Vibration studies on some integral rib-stiffened plates, J. Sound Vib., 50, 1, 43-61 (1977)
[13] Olson, M. D., Efficient modeling of blast loaded stiffened plates and cylindrical shell structures, Comput Struct., 40, 5, 1139-1149 (1991) · Zbl 0775.73045
[14] Rao, M. N.B.; Guruswamy, P.; Rao, M. V.; Pavithran, S., Studies on vibration of some rib-stiffened cantilever plates, J. Sound Vib., 57, 3, 389-402 (1978)
[15] Bedair, O. K.; Troitsky, M. S., A study of the fundamental frequency characteristics of eccentrically and concentrically simply supported stiffened plates, Int. J. Mech. Sci., 39, 11, 1257-1272 (1997) · Zbl 0892.73021
[16] Liu, Z. S.; Hansen, J. S.; Oguamanam, D. C.D., Eigenvalue sensitivity analysis of stiffened plates with respect to the location of stiffeners, Struct. Optim., 16, 2-3, 155-161 (1998)
[17] Saadatpour, M. M.; Esteki, K.; Azhari, M., Static and vibration analysis of stiffened plates by the finite element method, Adv. Struct., 1, 2, 593-598 (2003)
[18] Turvey, G. J.; Avanessian, N. G.V. D., Axisymmetric elastoplastic large deflection response of ring stiffened circular plates, Int. J. Mech. Sci., 31, 11-12, 905-924 (1989)
[19] Turvey, G. J.; Avanessian, N. G.V. D., Full-Range response of clamped ring-stiffened circular steel plates-comparisons between experiment and theory, Comput. Struct., 37, 1, 55-70 (1990)
[20] Turvey, G. J.; Salehi, M., Large deflection analysis of eccentrically stiffened sector plates, Comput. Struct., 68, 68, 191-205 (1998) · Zbl 0954.74551
[21] Turvey, G. J.; Salehi, M., Elastic large deflection analysis of stiffened annular sector plates, Int. J. Mech. Sci., 40, 1, 51-70 (1998) · Zbl 0899.73221
[22] Kolli, M.; Chandrashekhara, K., Finite element analysis of stiffened laminated plates under transverse loading, Compos. Sci. Technol., 56, 12, 1355-1361 (1996)
[23] Kolli, M.; Chandrashekhara, K., Non-linear static and dynamic analysis of stiffened laminated plates, Int. J. Non-Linear Mech., 32, 1, 89-101 (1997) · Zbl 0888.73026
[24] Rao, S. R.; Sheikh, A. H.; Mukhopadhyay, M., Large-amplitude finite-element flexural vibration of plates stiffened plates, J. Acoust. Soc. Am., 93, 6, 3250-3257 (1993)
[25] Sheikh, A. H.; Mukhopadhyay, M., Large amplitude free flexural vibration of stiffened plates, AIAA J., 34, 11, 2377-2383 (1996) · Zbl 0900.73330
[26] Mitra, A.; Sahoo, P.; Saha, K., Large-amplitude dynamic analysis of stiffened plates with free edges, J. Mech. Mater. Struct., 6, 6, 883-914 (2011)
[27] Hughes, T. J.R.; Cottrell, J. A.; Bazilevs, Y., Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement, Comput. Methods Appl. Mech. Eng., 194, 39-41, 4135-4195 (2005) · Zbl 1151.74419
[28] Akkerman, I.; Bazilevs, Y.; Calo, V. M.; Hughes, T. J.R.; Hulshoff, S., The role of continuity in residual-based variational multiscale modeling of turbulence, Comput. Mech., 41, 3, 371-378 (2008) · Zbl 1162.76355
[29] Bazilevs, Y.; Calo, V. M.; Hughes, T. J.R.; Zhang, Y., Isogeometric fluid-structure interaction: theory, algorithms and computations, Comput. Mech., 43, 1, 3-37 (2008) · Zbl 1169.74015
[30] Auricchio, F.; da Veiga, L. B.; Lovadina, C.; Reali, A., The importance of the exact satisfaction of the incompressibility constraint in nonlinear elasticity: mixed fems versus NURBS-based approximations, Comput. Methods Appl. Mech. Eng., 199, 5, 314-323 (2010) · Zbl 1227.74061
[31] Cottrell, J. A.; Hughes, T. J.R.; Reali, A., Studies of refinement and continuity in isogeometric structural analysis, Comput. Methods Appl. Mech. Eng., 196, 41-44, 4160-4183 (2007) · Zbl 1173.74407
[32] Cottrell, J. A.; Reali, A.; Bazilevs, Y.; Hughes, T. J.R., Isogeometric analysis of structural vibrations, Comput. Methods Appl. Mech. Eng., 195, 41, 5257-5296 (2006) · Zbl 1119.74024
[33] Bensen, D. J.; Bazilevs, Y.; Hsu, M. C.; Hughes, T. J.R., Isogeometric shell analysis: the Reissner-Mindlin shell, Comput. Methods Appl. Mech. Eng., 199, 5-8, 276-289 (2009) · Zbl 1227.74107
[34] Gómez, H.; Calo, V. M.; Bazilevs, Y.; Hughes, T. J.R., Isogeometric analysis of the Cahn-Hilliard phase-field model, Comput. Methods Appl. Mech. Eng., 197, 49, 4333-4352 (2008) · Zbl 1194.74524
[35] Thai, C. H.; Nguyen-Xuan, H.; Nguyen-Thanh, N.; Le, T. H.; Nguyen-Thoi, T.; Rabczuk, T., Static, free vibration, and buckling analysis of laminated composite Mindlin-Ressner plates using NURBS-based isogeometric approach, Int. J. Numer. Methods Eng., 91, 6, 571-603 (2012) · Zbl 1253.74007
[36] Kiendl, J.; Bletzinger, K. U.; Linhard, J.; Wüchner, R., Isogeometric shell analysis with Kirchhoff-Love elements, Comput. Methods Appl. Mech. Eng., 198, 49, 3902-3914 (2009) · Zbl 1231.74422
[37] Nguyen-Thanh, N.; Kiendl, J.; Nguyen-Xuan, H.; Wüchner, R.; Bletzinger, K. U.; Bazilevs, Y.; Rabczuk, T., Rotation free isogeometric thin shell analysis using PHT-splines, Comput. Methods Appl. Mech. Eng., 200, 47-48, 3410-3424 (2011) · Zbl 1230.74230
[38] Benson, D. J.; Bazilevs, Y.; Hsu, M. C.; Hughes, T. J.R., A large deformation, rotation-free, isogeometric shell, Comput. Methods Appl. Mech. Eng., 200, 13-16, 1367-1378 (2011) · Zbl 1228.74077
[39] Wall, W. A.; Frenzel, M. A.; Cyron, C., Isogeometric structural shape optimization, Comput. Methods Appl. Mech. Eng., 197, 33-40, 2976-2988 (2008) · Zbl 1194.74263
[40] Nguyen, V. P.; Simpson, R. N.; Bordas, S. P.A.; Rabczuk, T., Isogeometric analysis: A review and computer implementation aspects, Math. Comput. Simul., 117, 89-116 (2015) · Zbl 1540.65492
[41] Huang, S. G., 3D Modeling and Design of Rhino (2005), Tsinghua University Press, (4)
[42] Lipschutz, M. M., Schaum’s Outline of Theory and Problems of Differential Geometry (1969), McGraw-Hill: McGraw-Hill New York · Zbl 0202.52301
[43] Shi, P.; Kapania, RakeshK.; Dong, C. Y., Vibration and buckling analysis of curvilinearly stiffened plates using finite element method, AIAA J., 53, 5, 1-17 (2015)
[44] Tamijani, A. Y.; Kapania, R. K., Vibration of plate with curvilinear stiffeners using mesh-free method, AIAA J., 48, 8, 1569-1581 (2010)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.