×

Integrative sparse reduced-rank regression via orthogonal rotation for analysis of high-dimensional multi-source data. (English) Zbl 1523.62017

Summary: Recent advancements in technology have allowed for the collection of large amounts of data from multiple sources for individuals, leading to an increase in interest in developing statistical methods for analyzing the multi-source data. One of the main interests is to identify the structural association of multiple sources on multiple correlated responses, including individual, joint, and partially-joint structures. In this work, we propose a novel integrative sparse reduced-rank regression (iSRRR) model for identifying the structural associations between multi-source data and multiple responses. The model is based on the assumption of a structured decomposition of the coefficient matrix, and utilizes a new constraint based on orthogonal rotation to ensure model identifiability. The constraint imposes a specific structure, quartimax-simple, on the loading matrix, which enhances interpretability when identifying the multi-source structures relevant to specific responses. An iterative algorithm for estimating the iSRRR model parameters is also proposed. Simulation studies have demonstrated the ability of the proposed method to identify the underlying structured associations between multi-source data and multiple responses. The method has been applied to multi-omics dataset with multiple drug responses, and has been shown to be capable of detecting structured association patterns.

MSC:

62-08 Computational methods for problems pertaining to statistics
62J05 Linear regression; mixed models
62H12 Estimation in multivariate analysis
62P10 Applications of statistics to biology and medical sciences; meta analysis

Software:

SOFAR; JIVE; gglasso
Full Text: DOI

References:

[1] Akiyama, M., Multi-omics study for interpretation of genome-wide association study, J. Hum. Genet., 66, 1, 3-10 (2021) · doi:10.1038/s10038-020-00842-5
[2] Bickel, PJ; Ritov, Y.; Tsybakov, AB, Simultaneous analysis of lasso and dantzig selector, Ann. Stat., 37, 4, 1705-1732 (2009) · Zbl 1173.62022 · doi:10.1214/08-AOS620
[3] Bing, X.; Wegkamp, MH, Adaptive estimation of the rank of the coefficient matrix in high-dimensional multivariate response regression models, Ann. Stat., 47, 6, 3157-3184 (2019) · Zbl 1477.62140 · doi:10.1214/18-AOS1774
[4] Bunea, F.; She, Y.; Wegkamp, MH, Optimal selection of reduced rank estimators of high-dimensional matrices, Ann. Stat., 39, 2, 1282-1309 (2011) · Zbl 1216.62086 · doi:10.1214/11-AOS876
[5] Bunea, F., She, Y., Wegkamp, M.H.: Joint variable and rank selection for parsimonious estimation of high-dimensional matrices. Ann. Stat. 40(5), 2359-2388 (2012). doi:10.1214/12-AOS1039 · Zbl 1373.62246
[6] Chen, K.; Chan, KS; Stenseth, NC, Reduced rank stochastic regression with a sparse singular value decomposition: reduced rank stochastic regression, J. R. Stat. Soc., 74, 2, 203-221 (2012) · Zbl 1411.62182 · doi:10.1111/j.1467-9868.2011.01002.x
[7] Chen, L.; Huang, JZ, Sparse reduced-rank regression for simultaneous dimension reduction and variable selection, J. Am. Stat. Assoc., 107, 500, 1533-1545 (2012) · Zbl 1258.62075 · doi:10.1080/01621459.2012.734178
[8] Crawford, CB; Ferguson, GA, A general rotation criterion and its use in orthogonal rotation, Psychometrika, 35, 3, 321-332 (1970) · Zbl 0202.19102 · doi:10.1007/BF02310792
[9] Fan, J.; Lv, J., Sure independence screening for ultrahigh dimensional feature space, J. R. Stat. Soc., 70, 5, 849-911 (2008) · Zbl 1411.62187 · doi:10.1111/j.1467-9868.2008.00674.x
[10] Gaynanova, I.; Li, G., Structural learning and integrative decomposition of multi-view data, Biometrics, 75, 4, 1121-1132 (2019) · Zbl 1448.62163 · doi:10.1111/biom.13108
[11] Gower, JC; Dijksterhuis, GB, Procrustes Problems (2004), Oxford: Oxford University Press, Oxford · Zbl 1057.62044 · doi:10.1093/acprof:oso/9780198510581.001.0001
[12] Izenman, AJ, Reduced-rank regression for the multivariate linear model, J. Multivar. Anal., 5, 2, 248-264 (1975) · Zbl 0313.62042 · doi:10.1016/0047-259X(75)90042-1
[13] Jennrich, RI, A simple general procedure for orthogonal rotation, Psychometrika, 66, 2, 289-306 (2001) · Zbl 1293.62247 · doi:10.1007/BF02294840
[14] Li, G.; Liu, X.; Chen, K., Integrative multi-view regression: bridging group-sparse and low-rank models, Biometrics, 75, 2, 593-602 (2019) · Zbl 1436.62588 · doi:10.1111/biom.13006
[15] Lock, EF; Hoadley, KA; Marron, JS; Nobel, AB, Joint and individual variation explained (JIVE) for integrated analysis of multiple data types, Ann. Appl. Stat., 7, 1, 523-542 (2013) · Zbl 1454.62355 · doi:10.1214/12-AOAS597
[16] Luna, A.; Rajapakse, VN; Sousa, FG; Gao, J.; Schultz, N.; Varma, S.; Reinhold, W.; Sander, C.; Pommier, Y., rcellminer: exploring molecular profiles and drug response of the nci-60 cell lines in R, Bioinformatics, 32, 8, 1272-1274 (2016) · doi:10.1093/bioinformatics/btv701
[17] Mishra, A.; Dey, DK; Chen, K., Sequential co-sparse factor regression, J. Comput. Graph. Stat., 26, 4, 814-825 (2017) · doi:10.1080/10618600.2017.1340891
[18] Negahban, SN; Ravikumar, P.; Wainwright, MJ; Yu, B., A unified framework for high-dimensional analysis of M-estimators with decomposable regularizers, Stat. Sci., 27, 4, 538-557 (2012) · Zbl 1331.62350 · doi:10.1214/12-STS400
[19] Palzer, EF; Wendt, CH; Bowler, RP; Hersh, CP; Safo, SE; Lock, EF, SJIVE: supervised joint and individual variation explained, Comput. Stat. Data Anal., 175, 107547 (2022) · Zbl 07584282 · doi:10.1016/j.csda.2022.107547
[20] Rajapakse, VN; Luna, A.; Yamade, M.; Loman, L.; Varma, S.; Sunshine, M.; Iorio, F.; Sousa, FG; Elloumi, F.; Aladjem, MI; Thomas, A.; Sander, C.; Kohn, KW; Benes, CH; Garnett, M.; Reinhold, WC; Pommier, Y., Cell MinerCDB for integrative cross-database genomics and pharmacogenomics analyses of cancer cell lines, Iscience, 10, 247-264 (2018) · doi:10.1016/j.isci.2018.11.029
[21] Simon, N.; Friedman, J.; Hastie, T.; Tibshirani, R., A sparse-group lasso, J. Comput. Graph. Stat., 22, 2, 231-245 (2013) · doi:10.1080/10618600.2012.681250
[22] Uematsu, Y.; Fan, Y.; Chen, K.; Lv, J.; Lin, W., SOFAR: large-scale association network learning, IEEE Trans. Inf. Theory, 65, 8, 4924-4939 (2019) · Zbl 1432.68402 · doi:10.1109/TIT.2019.2909889
[23] Yang, Y., Zou, H.: A fast unified algorithm for solving group-lasso penalize learning problems. Stat. Comput. 25(6), 1129-1141 (2015). doi:10.1007/s11222-014-9498-5 · Zbl 1331.62343
[24] Yuan, M.; Lin, Y., Model selection and estimation in regression with grouped variables, J. R. Stat. Soc., 68, 1, 49-67 (2006) · Zbl 1141.62030 · doi:10.1111/j.1467-9868.2005.00532.x
[25] Zou, C., Ke, Y., Zhang, W.: Estimation of low rank high-dimensional multivariate linear models for multi-response data. J. Am. Stat. Assoc. 117(538), 693-703 (2022). doi:10.1080/01621459.2020.1799813 · Zbl 1507.62268
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.