×

The application of the lattice Boltzmann method to the one-dimensional modeling of pulse waves in elastic vessels. (English) Zbl 1483.76073

Summary: The one-dimensional nonlinear equations for the blood flow motion in distensible vessels are considered using the kinetic approach. It is shown that the Lattice Boltzmann (LB) model for non-ideal gas is asymptotically equivalent to the blood flow equations for compliant vessels at the limit of low Knudsen numbers. The equations of state for non-ideal gas are transformed to the pressure-luminal area response. This property allows to model arbitrary pressure-luminal area relations. Several test problems are considered: the propagation of a sole nonlinear wave in an elastic vessel, the propagation of a pulse wave in a vessel with varying mechanical properties (artery stiffening) and in an artery bifurcation, in the last problem Resistor-Capacitor-Resistor (RCR) boundary conditions are considered. The comparison with the previous results shows a good precision.

MSC:

76Z05 Physiological flows
92C35 Physiological flow
76M28 Particle methods and lattice-gas methods

Software:

VaMpy; pyNS; FEniCS

References:

[1] Taylor, C.; Draney, M., Experimental and computational methods in cardiovascular fluid mechanics, Rev. Fluid Mech., 36, 197-231 (2004) · Zbl 1125.76414
[2] Sherwin, S.; Franke, V.; Peiró, J.; Parker, K., One-dimensional modelling of a vascular network in space-time variables, J. Engrg. Math., 47, 217-250 (2003) · Zbl 1200.76230
[3] Hughes, T.; Lubliner, J., On the one-dimensional theory of blood flow in the larger vessels, Math. Biosci., 18, 161-170 (1973) · Zbl 0262.92004
[4] Formaggia, L.; Lamponi, D.; Quarteroni, A., One-dimensional models for blood flow in arteries, J. Engrg. Math., 47, 251-276 (2003) · Zbl 1070.76059
[5] Mynard, J.; Nithiarasu, P., A 1d arterial blood flow model incorporating ventricular pressure, aortic valve and regional coronary flow using the locally conservative galerkin (lcg) method, Commun. Numer. Methods Eng., 24, 367-417 (2008) · Zbl 1137.92009
[6] MacCormack, R., The effect of viscosity in hypervelocity impact cratering, J. Spacecr. Rockets, 40, 757-763 (2003)
[7] Hirsch, C., Numerical Computation of Internal and External Flows: The Fundamentals of Computational Fluid Dynamics (2007), Butterworth-Heinemann
[8] Olufsen, M.; Peskin, C.; Kim, W.; Pedersen, E.; Nadim, A.; Larsen, J., Numerical simulation and experimental validation of blood flow in arteries with structured-tree outflow conditions, Ann. Biomed. Eng., 28, 1281-1299 (2000)
[9] Duanmu, Z.; Chen, W.; Gao, H.; Yang, X.; Luo, X.; Hill, N., A one-dimensional hemodynamic model of the coronary arterial tree, Front. Physiol., 10, 853 (2019)
[10] Hou, Y.; Kassab, G., A hybrid one-dimensional/womersley model of pulsatile blood flow in the entire coronary arterial tree, Am. J. Physiol. Heart. Circ. Physiol., 292, H2623-H2633 (2007)
[11] Müller, L.; Toro, E., Well-balanced high-order solver for blood flow in networks of vessels with variable properties, Int J. Numer. Methods Biomed. Eng., 29, 1388-1411 (2013)
[12] Müller, L.; Parés, C.; Toro, E., Well-balanced high-order numerical schemes for one-dimensional blood flow in vessels with varying mechanical properties, J. Comput. Phys., 242, 53-85 (2013) · Zbl 1323.92066
[13] Boileau, E.; Nithiarasu, P.; Blanco, P.; Müller, L.; Fossan, F.; Hellevik, L.; Donders, W.; Huberts, W.; Willemet, M.; Alastruey, J., A benchmark study of numerical schemes for one-dimensional arterial blood flow modelling, Int. J. Numer. Methods Biomed. Eng., Article e02732 pp. (2015)
[14] Wang, X.; Fullana, J.-M.; Lagrée, P.-Y., Verification and comparison of four numerical schemes for a 1d viscoelastic blood flow model, Comput. Methods Biomech. Biomed. Eng., 18, 1-22 (2015)
[15] Manini, S.; Antiga, L.; Botti, L.; Remuzzi, A., Pyns: an open-source framework for 0D haemodynamic modelling, Ann. Biomed. Eng., 43, 1461-1473 (2014)
[16] Melis, A., Gaussian process emulators for 1d vascular models (2017), The University of Sheffield Sheffield, UK, (dissertation)
[17] Diem, A.; Bressloff, N., VaMpy: a python package to solve 1D blood flow problems, J. Open Res. Softw., 5, 17 (2017)
[18] Agdestein, S.; Valen-Sendstad, K.; Diem, A., Artery. FE: An implementation of the 1D blood flow equations in FEniCS, J. Open Res. Softw., 3, 1107 (2018)
[19] Krüger, T.; Kusumaatmaja, H.; Kuzmin, A.; Shardt, O.; Silva, G.; Viggen, E., The Lattice Boltzmann Method. Principles and Practice (2017), Springer · Zbl 1362.76001
[20] Succi, S., The Lattice Boltzmann Equation: For Complex States of Flowing Matter (2018), OUP: OUP Oxford · Zbl 1485.76003
[21] Fang, H.; Wang, Z.; Lin, Z.; Liu, M., Lattice Boltzmann method for simulating the viscous flow in large distensible blood vessels, Phys. Rev. E, 65, 051925 (2002)
[22] Chen, C.; Chen, H.; Freed, D.; Shock, R.; Staroselsky, I.; Zhang, R.; Coşkun, A.; Stone, P.; Feldman, C., Simulation of blood flow using extended Boltzmann kinetic approach, Physica A, 362, 174-181 (2006)
[23] Melchionna, S.; Kaxiras, E.; Bernaschi, M.; Succi, S., Endothelial shear stress hemodynamic simulation, Philos. Trans. A Math. Phys. Eng. Sci., 369, 2354-2361 (2011) · Zbl 1223.76144
[24] Bisson, M.; Bernaschi, M.; Melchionna, S.; Succi, S.; Kaxiras, E., Multiscale hemodynamics using clusters of GPU, Commun. Comput. Phys., 11, 48-64 (2011)
[25] Pontrelli, G.; Halliday, I.; Melchionna, S.; Spencer, T.; Succi, S., On the lattice boltzmann method as a computational framework for multiscale hemodynamics, Math. Comput. Model. Dyn. Syst., 20, 470-490 (2013) · Zbl 1328.92022
[26] De Rosis, A., Analysis of blood flow in deformable vessels via a lattice Boltzmann approach, Internat. J. Modern Phys. C, 25, 1350107 (2014)
[27] Gounley, J.; Vardhan, M.; Randles, A., A framework for comparing vascular hemodynamics at different points in time, Comput. Phys. Comm., 235, 1-8 (2019)
[28] Sherwin, S.; Formaggia, L.; Peiró, J.; Franke, V., Computational modelling of 1d blood flow with variable mechanical properties and its application to the simulation of wave propagation in the human arterial system, Internat. J. Numer. Methods Fluids, 43, 673-700 (2003) · Zbl 1032.76729
[29] Langewouters, G.; Wesseling, K.; Goedhard, W., The static elastic properties of 45 human thoracic and 20 abdominal aortas in vitro and the parameters of a new model, J. Biomech., 17, 425-435 (1984)
[30] Karlin, I.; Chikatamarla, S.; Ansumali, S., Elements of the lattice boltzmann method II: kinetics and hydrodynamics in one dimension, Commun. Comput. Phys., 2, 196-238 (2007)
[31] Chikatamarla, S.; Karlin, I., Entropy and galilean invariance of lattice Boltzmann theories, Phys. Rev. Lett., 97, 190601 (2006) · Zbl 1228.82079
[32] Chikatamarla, S.; Karlin, I., Lattices for the lattice Boltzmann method, Phys. Rev. E, 79, 046701 (2009)
[33] Zhang, R.; Chen, H., Lattice Boltzmann method for simulations of liquid-vapor thermal flows, Phys. Rev. E, 67, 066711 (2003)
[34] Yuan, P.; Schaefer, L., Equations of state in a lattice Boltzmann model, Phys. Fluids, 18, 042101 (2006) · Zbl 1185.76872
[35] Kupershtokh, A.; Medvedev, D.; Karpov, D., On equations of state in a lattice Boltzmann method, Comput. Math. Appl., 58, 965-974 (2009) · Zbl 1189.76413
[36] Kupershtokh, A., Criterion of numerical instability of liquid state in LBE simulations, Comput. Math. Appl., 59, 2236-2245 (2010) · Zbl 1193.76111
[37] Li, Q.; Luo, K.; Li, X., Forcing scheme in pseudopotential lattice Boltzmann model for multiphase flows, Phys. Rev. E, 86, 016709 (2012)
[38] Kupershtokh, A.; Medvedev, D.; Gribanov, I., Thermal lattice Boltzmann method for multiphase flows, Phys. Rev. E, 98, 023308 (2018)
[39] Qian, Y.-H., Fractional propagation and the elimination of staggered invariants in lattice-BGK models, Int. J. Mod. Phys. C, 8, 753-761 (1997)
[40] Zhang, R.; Chen, H.; Qian, Y.-H.; Chen, S., Effective volumetric lattice Boltzmann scheme, Phys. Rev. E, 63, 056705 (2001)
[41] Guo, Z.; Zheng, C.; Zhao, T. S., A lattice BGK scheme with general propagation, J. Sci. Comput., 16, 569-585 (2001) · Zbl 1039.76054
[42] Sofonea, V.; Sekerka, R., Viscosity of finite difference lattice Boltzmann models, J. Comput. Phys., 184, 422-434 (2003) · Zbl 1062.76556
[43] Sofonea, V.; Lamura, A.; Gonnella, G.; Cristea, A., Finite-difference lattice boltzmann model with flux limiters for liquid-vapor systems, Phys. Rev. E, 70, 046702 (2004)
[44] Guo, X.; Shi, B.; Chai, Z., General propagation lattice Boltzmann model for nonlinear advection-diffusion equations, Phys. Rev. E, 97, 043310 (2018)
[45] Ilyin, O., Nonlinear pressure-velocity waveforms in large arteries, shock waves and wave separation, Wave Motion, 84, 56-67 (2019) · Zbl 1483.76074
[46] Lighthill, J., Waves in Fluids (1978), Cambridge University Press · Zbl 0375.76001
[47] Schlaffer, M., Non-reflecting boundary conditions for the lattice Boltzmann method (2013), Technical University of Munich, (Ph.D. thesis)
[48] Westerhof, N.; Elzinga, G.; Sipkema, P., An artificial arterial system for pumping hearts, J. Appl. Physiol., 31, 776-781 (1971)
[49] Alastruey, J.; Parker, K.; Sherwin, S., Lumped parameter outflow models for 1-D blood flow simulations: effect on pulse waves and parameter estimation, Commun. Comput. Phys., 4, 317-336 (2008) · Zbl 1364.76248
[50] Shi, Y.; Lawford, P.; Hose, R., Review of zero-D and 1-D models of blood flow in the cardiovascular system, Biomed. Eng. Online, 10, 33-38 (2011)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.