×

TFPnP: tuning-free plug-and-play proximal algorithms with applications to inverse imaging problems. (English) Zbl 07625169

Summary: Plug-and-Play (PnP) is a non-convex optimization framework that combines proximal algorithms, for example, the alternating direction method of multipliers (ADMM), with advanced denoising priors. Over the past few years, great empirical success has been obtained by PnP algorithms, especially for the ones that integrate deep learning-based denoisers. However, a key problem of PnP approaches is the need for manual parameter tweaking which is essential to obtain high-quality results across the high discrepancy in imaging conditions and varying scene content. In this work, we present a class of tuning-free PnP proximal algorithms that can determine parameters such as denoising strength, termination time, and other optimization-specific parameters automatically. A core part of our approach is a policy network for automated parameter search which can be effectively learned via a mixture of model-free and model-based deep reinforcement learning strategies. We demonstrate, through rigorous numerical and visual experiments, that the learned policy can customize parameters to different settings, and is often more efficient and effective than existing handcrafted criteria. Moreover, we discuss several practical considerations of PnP denoisers, which together with our learned policy yield state-of-the-art results. This advanced performance is prevalent on both linear and nonlinear exemplar inverse imaging problems, and in particular shows promising results on compressed sensing MRI, sparse-view CT, single-photon imaging, and phase retrieval.

MSC:

68T05 Learning and adaptive systems in artificial intelligence

References:

[1] J. Adler and O. Oktem. Learned primal-dual reconstruction.IEEE Transactions on Medical Imaging, 37(6):1322-1332, 2018.
[2] H. K. Aggarwal and M. Jacob. J-modl: Joint model-based deep learning for optimized sampling and reconstruction.IEEE Journal of Selected Topics in Signal Processing, 14(6):
[3] H. K. Aggarwal, M. P. Mani, and M. Jacob. Modl: Model-based deep learning architecture for inverse problems.IEEE Transactions on Medical Imaging, 38(2):394-405, 2018.
[4] F. Aguet, D. Van De Ville, and M. Unser. Model-based 2.5-d deconvolution for extended depth of field in brightfield microscopy.IEEE Transactions on Image Processing, 17(7): 1144-1153, 2008.
[5] M. B. Alver, A. Saleem, and M. C¸ etin. Plug-and-play synthetic aperture radar image formation using deep priors.IEEE Transactions on Computational Imaging, 7:43-57, 2020.
[6] S. Arridge, P. Maass, O. ¨Oktem, and C.-B. Sch¨onlieb. Solving inverse problems using data-driven models.Acta Numerica, 28:1-174, 2019. · Zbl 1429.65116
[7] H. H. Bauschke, P. L. Combettes, et al.Convex analysis and monotone operator theory in Hilbert spaces, volume 408. Springer, 2011. · Zbl 1218.47001
[8] M. Bayati and A. Montanari. The dynamics of message passing on dense graphs, with applications to compressed sensing.IEEE Transactions on Information Theory, 57(2): 764-785, 2011. · Zbl 1366.94079
[9] M. Bayati, M. A. Erdogdu, and A. Montanari. Estimating lasso risk and noise level. In Advances in Neural Information Processing Systems, volume 26, pages 944-952, 2013.
[10] A. Beck and M. Teboulle. A fast iterative shrinkage-thresholding algorithm for linear inverse problems.SIAM Journal on Imaging Sciences, 2(1):183-202, 2009. · Zbl 1175.94009
[11] M. Benning and M. Burger. Modern regularization methods for inverse problems.arXiv preprint arXiv:1801.09922, 2018. · Zbl 1431.65080
[12] T. Blu and F. Luisier. The sure-let approach to image denoising.IEEE Transactions on Image Processing, 16(11):2778-2786, 2007.
[13] S. Boyd, N. Parikh, E. Chu, B. Peleato, J. Eckstein, et al. Distributed optimization and statistical learning via the alternating direction method of multipliers.Foundations and · Zbl 1229.90122
[14] A. Brifman, Y. Romano, and M. Elad. Turning a denoiser into a super-resolver using plug and play priors. InIEEE International Conference on Image Processing, pages 1404-1408. IEEE, 2016.
[15] A. Brifman, Y. Romano, and M. Elad. Unified single-image and video super-resolution via denoising algorithms.IEEE Transactions on Image Processing, 28(12):6063-6076, 2019.
[16] T. Brooks, B. Mildenhall, T. Xue, J. Chen, D. Sharlet, and J. T. Barron. Unprocessing images for learned raw denoising. InIEEE Conference on Computer Vision and Pattern
[17] A. Buades, B. Coll, and J.-M. Morel. A non-local algorithm for image denoising. InIEEE Conference on Computer Vision and Pattern Recognition, pages 60-65, 2005. · Zbl 1108.94004
[18] G. T. Buzzard, S. H. Chan, S. Sreehari, and C. A. Bouman. Plug-and-play unplugged: Optimization-free reconstruction using consensus equilibrium.SIAM Journal on Imaging Sciences, 11(3):2001-2020, 2018. · Zbl 1419.94002
[19] B. Cakmak, O. Winther, and B. H. Fleury. S-amp: Approximate message passing for general matrix ensembles. InIEEE Information Theory Workshop, pages 192-196. IEEE, 2014.
[20] E. Candes, X. Li, and M. Soltanolkotabi. Phase retrieval via wirtinger flow: Theory and algorithms.IEEE Transactions on Information Theory, 61(4):1985-2007, 2014. · Zbl 1359.94069
[21] E. J. Cand‘es, X. Li, and M. Soltanolkotabi. Phase retrieval from coded diffraction patterns. Applied and Computational Harmonic Analysis, 39(2):277-299, 2015. · Zbl 1329.78056
[22] A. Chambolle and T. Pock. A first-order primal-dual algorithm for convex problems with applications to imaging.Journal of Mathematical Imaging and Vision, 40(1):120-145, 2011. · Zbl 1255.68217
[23] A. Chambolle and T. Pock. An introduction to continuous optimization for imaging.Acta Numerica, 25:161-319, 2016. · Zbl 1343.65064
[24] S. H. Chan. Performance analysis of plug-and-play admm: A graph signal processing perspective.IEEE Transactions on Computational Imaging, 5(2):274-286, 2019.
[25] S. H. Chan and Y. M. Lu. Efficient image reconstruction for gigapixel quantum image sensors. InIEEE Global Conference on Signal and Information Processing, pages 312-316. IEEE, 2014.
[26] S. H. Chan, X. Wang, and O. A. Elgendy. Plug-and-play admm for image restoration: Fixed-point convergence and applications.IEEE Transactions on Computational Imaging, 3(1):84-98, 2017.
[27] X. Chang, L. Bian, and J. Zhang.Large-scale phase retrieval.arXiv preprint arXiv:2104.03148, 2021.
[28] H. Chen, Y. Zhang, M. K. Kalra, F. Lin, Y. Chen, P. Liao, J. Zhou, and G. Wang. Low-dose ct with a residual encoder-decoder convolutional neural network.IEEE transactions on
[29] T. Chen, X. Chen, W. Chen, H. Heaton, J. Liu, Z. Wang, and W. Yin. Learning to optimize: A primer and a benchmark.arXiv preprint arXiv:2103.12828, 2021.
[30] I. Y. Chun, Z. Huang, H. Lim, and J. A. Fessler. Momentum-net: Fast and convergent iterative neural network for inverse problems.arXiv preprint arXiv:1907.11818, 2019.
[31] R. Cohen, Y. Blau, D. Freedman, and E. Rivlin. It has potential: Gradient-driven denoisers for convergent solutions to inverse problems. InAdvances in Neural Information Processing Systems, 2021a.
[32] R. Cohen, M. Elad, and P. Milanfar. Regularization by denoising via fixed-point projection (red-pro).SIAM Journal on Imaging Sciences, 14(3):1374-1406, 2021b. · Zbl 1474.94011
[33] K. Dabov, A. Foi, V. Katkovnik, and K. Egiazarian.Image denoising by sparse 3-d transform-domain collaborative filtering.IEEE Transactions on Image Processing, 16(8): 2080, 2007.
[34] A. Danielyan, V. Katkovnik, and K. Egiazarian. Image deblurring by augmented lagrangian with bm3d frame prior. InWorkshop on Information Theoretic Methods in Science and · Zbl 1373.94096
[35] Y. Dar, A. M. Bruckstein, M. Elad, and R. Giryes. Postprocessing of compressed images via sequential denoising.IEEE Transactions on Image Processing, 25(7):3044-3058, 2016. · Zbl 1408.94122
[36] I. Daubechies.Ten lectures on wavelets. SIAM, 1992. · Zbl 0776.42018
[37] I. Daubechies, M. Defrise, and C. De Mol. An iterative thresholding algorithm for linear inverse problems with a sparsity constraint.Communications on Pure and Applied · Zbl 1077.65055
[38] S. Diamond, V. Sitzmann, F. Heide, and G. Wetzstein. Unrolled optimization with deep priors.arXiv preprint arXiv:1705.08041, 2017.
[39] W. Dong, P. Wang, W. Yin, G. Shi, F. Wu, and X. Lu. Denoising prior driven deep neural network for image restoration.IEEE Transactions on Pattern Analysis and Machine
[40] W. Dong, C. Zhou, F. Wu, J. Wu, G. Shi, and X. Li. Model-guided deep hyperspectral image super-resolution.IEEE Transactions on Image Processing, 2021.
[41] D. L. Donoho and I. M. Johnstone. Adapting to unknown smoothness via wavelet shrinkage. Journal of the American Statistical Association, 90(432):1200-1224, 1995. · Zbl 0869.62024
[42] D. L. Donoho, A. Maleki, and A. Montanari. Message-passing algorithms for compressed sensing.Proceedings of the National Academy of Sciences, 106(45):18914-18919, 2009.
[43] D. L. Donoho, A. Maleki, and A. Montanari. Message passing algorithms for compressed sensing: I. motivation and construction.InIEEE information theory workshop on
[44] D. L. Donoho, A. Maleki, and A. Montanari. Message passing algorithms for compressed sensing: Ii. analysis and validation. InIEEE Information Theory Workshop on Information
[45] J. Eckstein and D. P. Bertsekas. On the douglas—rachford splitting method and the proximal point algorithm for maximal monotone operators.Mathematical Programming, 55(1-3): 293-318, 1992. · Zbl 0765.90073
[46] E. M. Eksioglu. Decoupled algorithm for mri reconstruction using nonlocal block matching model: Bm3d-mri.Journal of Mathematical Imaging and Vision, 56(3):430-440, 2016. · Zbl 1386.68204
[47] E. M. Eksioglu and A. K. Tanc. Denoising amp for mri reconstruction: Bm3d-amp-mri. SIAM Journal on Imaging Sciences, 11(3):2090-2109, 2018. · Zbl 1478.94034
[48] I. A. Elbakri and J. A. Fessler. Segmentation-free statistical image reconstruction for polyenergetic x-ray computed tomography. InIEEE International Symposium on Biomedical
[49] Y. C. Eldar. Generalized sure for exponential families: Applications to regularization.IEEE Transactions on Signal Processing, 57(2):471-481, 2008. · Zbl 1391.62131
[50] H. W. Engl, M. Hanke, and A. Neubauer.Regularization of inverse problems, volume 375. Springer Science & Business Media, 1996. · Zbl 0859.65054
[51] E. Esser, X. Zhang, and T. F. Chan. A general framework for a class of first order primal-dual algorithms for convex optimization in imaging science.SIAM Journal on Imaging Sciences, 3(4):1015-1046, 2010. · Zbl 1206.90117
[52] M. Everingham, S. Eslami, L. Van Gool, C. Williams, J. Winn, and A. Zisserman. The pascal visual object classes challenge: A retrospective.International Journal of Computer
[53] M. Fazel, H. Hindi, and S. P. Boyd. A rank minimization heuristic with application to minimum order system approximation. InProceedings of the American Control Conference, volume 6, pages 4734-4739. IEEE, 2001.
[54] J. A. Fessler. Model-based image reconstruction for mri.IEEE Signal Processing Magazine, 27(4):81-89, 2010.
[55] J. R. Fienup. Phase retrieval algorithms: a comparison.Applied Optics, 21(15):2758-2769, 1982.
[56] E. R. Fossum. The quanta image sensor (qis): concepts and challenges. InImaging Systems and Applications, page JTuE1. Optical Society of America, 2011.
[57] E. R. Fossum, J. Ma, S. Masoodian, L. Anzagira, and R. Zizza. The quanta image sensor: Every photon counts.Sensors, 16(8):1260, 2016.
[58] R. Furuta, N. Inoue, and T. Yamasaki.Fully convolutional network with multi-step reinforcement learning for image processing. InAAAI Conference on Artificial Intelligence, pages 3598-3605, 2019.
[59] D. Gabay and B. Mercier. A dual algorithm for the solution of nonlinear variational problems via finite element approximation.Computers & mathematics with applications, 2(1):17-40, 1976. · Zbl 0352.65034
[60] R. G. Gavaskar, C. D. Athalye, and K. N. Chaudhury. On plug-and-play regularization using linear denoisers.IEEE Transactions on Image Processing, 30:4802-4813, 2021.
[61] D. Geman. Nonlinear image recovery with half-quadratic regularization.IEEE Transactions on Image Processing, 4(7):932-946, 1995.
[62] R. W. Gerchberg. A practical algorithm for the determination of phase from image and diffraction plane pictures.Optik, 35:237-246, 1972.
[63] D. Gilton, G. Ongie, and R. Willett. Neumann networks for linear inverse problems in imaging.IEEE Transactions on Computational Imaging, 6:328-343, 2019.
[64] R. Giryes, M. Elad, and Y. C. Eldar. Automatic parameter setting for iterative shrinkage methods. InIEEE Convention of Electrical and Electronics Engineers in Israel, pages 820-824. IEEE, 2008.
[65] R. Giryes, M. Elad, and Y. C. Eldar. The projected gsure for automatic parameter tuning in iterative shrinkage methods.Applied and Computational Harmonic Analysis, 30(3): 407-422, 2011. · Zbl 1210.94015
[66] T. Goldstein, M. Li, and X. Yuan. Adaptive primal-dual splitting methods for statistical learning and image processing. InAdvances in Neural Information Processing Systems, pages 2089-2097. 2015.
[67] G. H. Golub, M. Heath, and G. Wahba. Generalized cross-validation as a method for choosing a good ridge parameter.Technometrics, 21(2):215-223, 1979. · Zbl 0461.62059
[68] K. Gregor and Y. LeCun. Learning fast approximations of sparse coding. InInternational Conference on Machine Learning, pages 399-406, 2010.
[69] S. Gu, Q. Xie, D. Meng, W. Zuo, X. Feng, and L. Zhang. Weighted nuclear norm minimization and its applications to low level vision.International Journal of Computer Vision, 121(2): 183-208, 2017. · Zbl 1458.68231
[70] C. Guo and M. E. Davies. Near optimal compressed sensing without priors: Parametric sure approximate message passing.IEEE Transactions on Signal Processing, 63(8):2130-2141, 2015. · Zbl 1394.94215
[71] H. Gupta, K. H. Jin, H. Q. Nguyen, M. T. McCann, and M. Unser. Cnn-based projected gradient descent for consistent ct image reconstruction.IEEE transactions on medical
[72] P. C. Hansen. Analysis of discrete ill-posed problems by means of the l-curve.SIAM Review, 34(4):561-580, 1992. · Zbl 0770.65026
[73] P. C. Hansen. The l-curve and its use in the numerical treatment of inverse problems. 1999.
[74] P. C. Hansen and D. P. O’Leary. The use of the l-curve in the regularization of discrete ill-posed problems.SIAM Journal on Scientific Computing, 14(6):1487-1503, 1993. · Zbl 0789.65030
[75] B. He, H. Yang, and S. Wang. Alternating direction method with self-adaptive penalty parameters for monotone variational inequalities.Journal of Optimization Theory and · Zbl 0997.49008
[76] J. He, Y. Yang, Y. Wang, D. Zeng, Z. Bian, H. Zhang, J. Sun, Z. Xu, and J. Ma. Optimizing a parameterized plug-and-play admm for iterative low-dose ct reconstruction.IEEE
[77] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. InIEEE Conference on Computer Vision and Pattern Recognition, 2016.
[78] F. Heide, M. Steinberger, Y.-T. Tsai, M. Rouf, D. Pajak, D. Reddy, O. Gallo, J. Liu, W. Heidrich, K. Egiazarian, et al. Flexisp: A flexible camera image processing framework.
[79] F. Heide, S. Diamond, M. Niesner, J. Ragan-Kelley, W. Heidrich, and G. Wetzstein. Proximal: Efficient image optimization using proximal algorithms.ACM Transactions on Graphics, 35(4):84, 2016.
[80] G. T. Herman.Fundamentals of computerized tomography: image reconstruction from projections. Springer Science and Business Media, 2009. · Zbl 1280.92002
[81] J. R. Hershey, J. L. Roux, and F. Weninger. Deep unfolding: Model-based inspiration of novel deep architectures.arXiv preprint arXiv:1409.2574, 2014.
[82] J. Huang, S. Zhang, and D. Metaxas. Efficient mr image reconstruction for compressed mr imaging.Medical Image Analysis, 15:135-142, 2010.
[83] T. Huang, W. Dong, X. Yuan, J. Wu, and G. Shi. Deep gaussian scale mixture prior for spectral compressive imaging.arXiv preprint arXiv:2103.07152, 2021.
[84] Z. Huang, W. Heng, and S. Zhou. Learning to paint with model-based deep reinforcement learning. InIEEE International Conference on Computer Vision, 2019.
[85] Z. Hui, J. Li, X. Wang, and X. Gao. Learning the non-differentiable optimization for blind super-resolution. InIEEE Conference on Computer Vision and Pattern Recognition, pages 2093-2102, 2021.
[86] S. Hurault, A. Leclaire, and N. Papadakis. Gradient step denoiser for convergent plug-andplay.arXiv preprint arXiv:2110.03220, 2021.
[87] S. Ioffe and C. Szegedy. Batch normalization: Accelerating deep network training by reducing internal covariate shift.arXiv preprint arXiv:1502.03167, 2015.
[88] K. H. Jin, M. T. McCann, E. Froustey, and M. Unser. Deep convolutional neural network for inverse problems in imaging.IEEE Transactions on Image Processing, 26(9):4509-4522, 2017. · Zbl 1409.94275
[89] U. S. Kamilov, H. Mansour, and B. Wohlberg. A plug-and-play priors approach for solving nonlinear imaging inverse problems.IEEE Signal Processing Letters, 24(12):1872-1876, 2017.
[90] W. C. Karl. Regularization in image restoration and reconstruction. InHandbook of Image and Video Processing, pages 183-V. Elsevier, 2005.
[91] V. Katkovnik. Phase retrieval from noisy data based on sparse approximation of object phase and amplitude.arXiv preprint arXiv:1709.01071, 2017.
[92] O. Katz, P. Heidmann, M. Fink, and S. Gigan. Non-invasive single-shot imaging through scattering layers and around corners via speckle correlations.Nature Photonics, 8(10):784, 2014.
[93] D. P. Kingma and J. Ba. Adam: A method for stochastic optimization.arXiv preprint arXiv:1412.6980, 2014.
[94] B. Lecouat, J. Ponce, and J. Mairal. Fully trainable and interpretable non-local sparse models for image restoration. InEuropean Conference on Computer Vision. Springer, 2020.
[95] S. Lefkimmiatis. Universal denoising networks: a novel cnn architecture for image denoising. InIEEE Conference on Computer Vision and Pattern Recognition, pages 3204-3213, 2018.
[96] Y. Li, M. Qi, R. Gulve, M. Wei, R. Genov, K. N. Kutulakos, and W. Heidrich. End-toend video compressive sensing using anderson-accelerated unrolled networks. InIEEE
[97] H. Y. Liao and G. Sapiro. Sparse representations for limited data tomography. InIEEE International Symposium on Biomedical Imaging: From Nano to Macro, pages 1375-1378.
[98] T. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver, and D. Wierstra. Continuous control with deep reinforcement learning.International Conference on Learning
[99] L. Lin. Self-improving reactive agents based on reinforcement learning, planning and teaching. Machine Learning, 8(3):293-321, 1992.
[100] P.-L. Lions and B. Mercier. Splitting algorithms for the sum of two nonlinear operators. SIAM Journal on Numerical Analysis, 16(6):964-979, 1979. · Zbl 0426.65050
[101] J. Liu, M. S. Asif, B. Wohlberg, and U. S. Kamilov. Recovery analysis for plug-and-play priors using the restricted eigenvalue condition. 2021a.
[102] J. Liu, Y. Sun, W. Gan, X. Xu, B. Wohlberg, and U. S. Kamilov. Stochastic deep unfolding for imaging inverse problems. InIEEE International Conference on Acoustics, Speech and Signal Processing, pages 1395-1399. IEEE, 2021b.
[103] R. Liu, Z. Jiang, X. Fan, and Z. Luo. Knowledge-driven deep unrolling for robust image layer separation.IEEE Ttransactions on Neural Networks and Learning Systems, 31(5): 1653-1666, 2019.
[104] Y. Liu, X. Yuan, J. Suo, D. J. Brady, and Q. Dai. Rank minimization for snapshot compressive imaging.IEEE Transactions on Pattern Analysis and Machine Intelligence, 41(12):2990-3006, 2018.
[105] A. Lucas, M. Iliadis, R. Molina, and A. K. Katsaggelos. Using deep neural networks for inverse problems in imaging: beyond analytical methods.IEEE Signal Processing
[106] M. Lustig, D. L. Donoho, J. M. Santos, and J. M. Pauly. Compressed sensing mri.IEEE signal processing magazine, 25(2):72-82, 2008.
[107] J. Ma and L. Ping. Orthogonal amp.IEEE Access, 5:2020-2033, 2017.
[108] J. Ma, Y. Wang, X. An, C. Ge, Z. Yu, J. Chen, Q. Zhu, G. Dong, J. He, Z. He, et al. Towards efficient covid-19 ct annotation: A benchmark for lung and infection segmentation.arXiv preprint arXiv:2004.12537, 2020.
[109] Mairal, Julien, Tillmann, Andreas, M., Eldar, Yonina, and C. Dolphin-dictionary learning for phase retrieval.IEEE Transactions on Signal Processing, 64(24):6485-6500, 2016. · Zbl 1414.94621
[110] J. Mairal, F. Bach, J. Ponce, and G. Sapiro. Online dictionary learning for sparse coding. InProceedings of the 26th annual international conference on machine learning, pages 689-696, 2009a. · Zbl 1242.62087
[111] J. Mairal, F. R. Bach, J. Ponce, G. Sapiro, and A. Zisserman. Non-local sparse models for image restoration. InIEEE International Conference on Computer Vision, volume 29, pages 54-62, 2009b.
[112] S. G. Mallat. A theory for multiresolution signal decomposition: the wavelet representation. IEEE transactions on pattern analysis and machine intelligence, 11(7):674-693, 1989. · Zbl 0709.94650
[113] A. Manoel, F. Krzakala, E. Tramel, and L. Zdeborov‘a. Swept approximate message passing for sparse estimation. InInternational Conference on Machine Learning, pages 1123-1132. PMLR, 2015.
[114] M. Mardani, Q. Sun, D. Donoho, V. Papyan, H. Monajemi, S. Vasanawala, and J. Pauly. Neural proximal gradient descent for compressive imaging. InAdvances in Neural Information
[115] D. Martin, C. Fowlkes, D. Tal, and J. Malik. A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics. InIEEE International Conference on Computer Vision, pages 416-423, 2001.
[116] M. T. McCann, K. H. Jin, and M. Unser. Convolutional neural networks for inverse problems in imaging: A review.IEEE Signal Processing Magazine, 34(6):85-95, 2017.
[117] T. Meinhardt, M. Moller, C. Hazirbas, and D. Cremers. Learning proximal operators: Using denoising networks for regularizing inverse imaging problems. InIEEE International
[118] C. Metzler, A. Mousavi, and R. Baraniuk. Learned d-amp: Principled neural network based compressive image recovery. InAdvances in Neural Information Processing Systems, pages 1772-1783. 2017a.
[119] C. Metzler, P. Schniter, A. Veeraraghavan, et al. prdeep: Robust phase retrieval with a flexible deep network. InInternational Conference on Machine Learning, pages 3498-3507, 2018.
[120] C. A. Metzler and G. Wetzstein. D-vdamp: Denoising-based approximate message passing for compressive mri. InIEEE International Conference on Acoustics, Speech and Signal
[121] C. A. Metzler, A. Maleki, and R. G. Baraniuk. Bm3d-prgamp: Compressive phase retrieval based on bm3d denoising. InIEEE International Conference on Image Processing, 2016a.
[122] C. A. Metzler, A. Maleki, and R. G. Baraniuk. From denoising to compressed sensing.IEEE Transactions on Information Theory, 62(9):5117-5144, 2016b. · Zbl 1359.94137
[123] C. A. Metzler, M. K. Sharma, S. Nagesh, R. G. Baraniuk, O. Cossairt, and A. Veeraraghavan. Coherent inverse scattering via transmission matrices: Efficient phase retrieval algorithms and a public dataset. InIEEE International Conference on Computational Photography, pages 1-16, 2017b.
[124] R. P. Millane. Phase retrieval in crystallography and optics.JOSA A, 7(3):394-411, 1990.
[125] C. Millard, A. T. Hess, B. Mailh´e, and J. Tanner. Approximate message passing with a colored aliasing model for variable density fourier sampled images.IEEE Open Journal of Signal Processing, 1:146-158, 2020.
[126] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wierstra, and M. Riedmiller. Playing atari with deep reinforcement learning.arXiv preprint arXiv:1312.5602, 2013.
[127] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski, et al. Human-level control through deep reinforcement learning.Nature, 518(7540):529-533, 2015.
[128] V. Monga, Y. Li, and Y. C. Eldar. Algorithm unrolling: Interpretable, efficient deep learning for signal and image processing.IEEE Signal Processing Magazine, 38(2):18-44, 2021.
[129] E. C. Morgan, M. Lackner, R. M. Vogel, and L. G. Baise. Probability distributions for offshore wind speeds.Energy Conversion and Management, 52(1):15-26, 2011.
[130] V. A. Morozov. On the solution of functional equations by the method of regularization. In Doklady Akademii Nauk, volume 167, pages 510-512. Russian Academy of Sciences, 1966. · Zbl 0187.12203
[131] A. Mousavi, A. Maleki, and R. G. Baraniuk. Parameterless optimal approximate message passing.arXiv preprint arXiv:1311.0035, 2013. · Zbl 1401.62116
[132] A. Mousavi, A. Maleki, R. G. Baraniuk, et al. Consistent parameter estimation for lasso and approximate message passing.The Annals of Statistics, 46(1):119-148, 2018. · Zbl 1401.62116
[133] P. Nair, R. G. Gavaskar, and K. N. Chaudhury. Fixed-point and objective convergence of plug-and-play algorithms.IEEE Transactions on Computational Imaging, 7:337-348, 2021.
[134] F. Natterer.The mathematics of computerized tomography. SIAM, 2001. 42 · Zbl 0973.92020
[135] G. Ongie, A. Jalal, C. A. Metzler, R. G. Baraniuk, A. G. Dimakis, and R. Willett. Deep learning techniques for inverse problems in imaging.IEEE Journal on Selected Areas in
[136] S. Ono. Primal-dual plug-and-play image restoration.IEEE Signal Processing Letters, 24 (8):1108-1112, 2017.
[137] S. Osher, M. Burger, D. Goldfarb, J. Xu, and W. Yin. An iterative regularization method for total variation-based image restoration.Multiscale Modeling and Simulation, 4(2): 460-489, 2005. · Zbl 1090.94003
[138] F. O’Sullivan and G. Wahba. A cross validated bayesian retrieval algorithm for nonlinear remote sensing experiments.Journal of Computational Physics, 59(3):441-455, 1985. · Zbl 0626.65053
[139] N. Parikh, S. Boyd, et al. Proximal algorithms.Foundations and Trends®in Optimization, 1(3):127-239, 2014.
[140] J. Peters and S. Schaal. Policy gradient methods for robotics.International Conference on Intelligent Robots and Systems, pages 2219-2225, 2006.
[141] T. Plotz and S. Roth. Benchmarking denoising algorithms with real photographs. InIEEE Conference on Computer Vision and Pattern Recognition, pages 1586-1595, 2017.
[142] X. Qu, Y. Hou, F. Lam, D. Guo, J. Zhong, and Z. Chen. Magnetic resonance image reconstruction from undersampled measurements using a patch-based nonlocal operator.
[143] S. Ramani, T. Blu, and M. Unser. Monte-carlo sure: A black-box optimization of regularization parameters for general denoising algorithms.IEEE Transactions on image processing, 17(9):1540-1554, 2008.
[144] S. Ramani, Z. Liu, J. Rosen, J.-F. Nielsen, and J. A. Fessler. Regularization parameter selection for nonlinear iterative image restoration and mri reconstruction using gcv and sure-based methods.IEEE Transactions on Image Processing, 21(8):3659-3672, 2012. · Zbl 1373.94340
[145] S. Rangan. Estimation with random linear mixing, belief propagation and compressed sensing. InAnnual Conference on Information Sciences and Systems, pages 1-6. IEEE, 2010.
[146] S. Rangan. Generalized approximate message passing for estimation with random linear mixing. InIEEE International Symposium on Information Theory Proceedings, pages 2168-2172. IEEE, 2011.
[147] S. Rangan, P. Schniter, E. Riegler, A. K. Fletcher, and V. Cevher. Fixed points of generalized approximate message passing with arbitrary matrices.IEEE Transactions on Information · Zbl 1359.94158
[148] S. Rangan, P. Schniter, and A. K. Fletcher. Vector approximate message passing.IEEE Transactions on Information Theory, 65(10):6664-6684, 2019a. · Zbl 1432.94036
[149] S. Rangan, P. Schniter, A. K. Fletcher, and S. Sarkar. On the convergence of approximate message passing with arbitrary matrices.IEEE Transactions on Information Theory, 65 · Zbl 1432.94037
[150] M. Raphan and E. P. Simoncelli. Optimal denoising in redundant representations.IEEE Transactions on Image Processing, 17(8):1342-1352, 2008.
[151] S. Ravishankar and Y. Bresler. Mr image reconstruction from highly undersampled k-space data by dictionary learning.IEEE Transactions on Medical Imaging, 30(5):1028-1041, 2010.
[152] B. Recht, M. Fazel, and P. A. Parrilo. Guaranteed minimum-rank solutions of linear matrix equations via nuclear norm minimization.SIAM review, 52(3):471-501, 2010. · Zbl 1198.90321
[153] E. T. Reehorst and P. Schniter. Regularization by denoising: Clarifications and new interpretations.IEEE Transactions on Computational Imaging, 5(1):52-67, 2018.
[154] S. J. Reeves. Optimal space-varying regularization in iterative image restoration.IEEE Transactions on Image Processing, 3(3):319-324, 1994.
[155] T. Regi´nska. A regularization parameter in discrete ill-posed problems.SIAM Journal on Scientific Computing, 17(3):740-749, 1996. · Zbl 0865.65023
[156] J. H. Rick Chang, C.-L. Li, B. Poczos, B. V. K. Vijaya Kumar, and A. C. Sankaranarayanan. One network to solve them all – solving linear inverse problems using deep projection models. InIEEE International Conference on Computer Vision, 2017.
[157] Y. Romano, M. Elad, and P. Milanfar. The little engine that could: Regularization by denoising (red).SIAM Journal on Imaging Sciences, 10(4):1804-1844, 2017. · Zbl 1401.62101
[158] M. Ronchetti. Torchradon: Fast differentiable routines for computed tomography.arXiv preprint arXiv:2009.14788, 2020.
[159] A. Rond, R. Giryes, and M. Elad. Poisson inverse problems by the plug-and-play scheme. Journal of Visual Communication and Image Representation, 41:96-108, 2016.
[160] O. Ronneberger, P. Fischer, and T. Brox. U-net: Convolutional networks for biomedical image segmentation. InInternational Conference on Medical Image Computing and
[161] L. I. Rudin, S. Osher, and E. Fatemi. Nonlinear total variation based noise removal algorithms. Physica D: nonlinear phenomena, 60(1-4):259-268, 1992. · Zbl 0780.49028
[162] E. Ryu, J. Liu, S. Wang, X. Chen, Z. Wang, and W. Yin. Plug-and-play methods provably converge with properly trained denoisers. InInternational Conference on Machine Learning, pages 5546-5557, 2019.
[163] T. Salimans and D. P. Kingma. Weight normalization: a simple reparameterization to accelerate training of deep neural networks.Advances in Neural Information Processing Systems, pages 901-909, 2016.
[164] J. Schulman, S. Levine, P. Abbeel, M. Jordan, and P. Moritz. Trust region policy optimization. InInternational Conference on Machine Learning, pages 1889-1897, 2015.
[165] O. Semerci, N. Hao, M. E. Kilmer, and E. L. Miller. Tensor-based formulation and nuclear norm regularization for multienergy computed tomography.IEEE Transactions on Image · Zbl 1374.94335
[166] E. Y. Sidky and X. Pan. Image reconstruction in circular cone-beam computed tomography by constrained, total-variation minimization.Physics in Medicine and Biology, 53(17): 4777, 2008.
[167] D. Silver, G. Lever, N. Heess, T. Degris, D. Wierstra, and M. Riedmiller. Deterministic policy gradient algorithms.International Conference on Machine Learning, 2014.
[168] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. Van Den Driessche, J. Schrittwieser, I. Antonoglou, V. Panneershelvam, M. Lanctot, et al. Mastering the game of go with deep neural networks and tree search.Nature, 529(7587):484, 2016.
[169] S. Sreehari, S. V. Venkatakrishnan, B. Wohlberg, G. T. Buzzard, L. F. Drummy, J. P. Simmons, and C. A. Bouman. Plug-and-play priors for bright field electron tomography and sparse interpolation.IEEE Transactions on Computational Imaging, 2(4):408-423, 2016.
[170] S. Sreehari, S. Venkatakrishnan, K. L. Bouman, J. P. Simmons, L. F. Drummy, and C. A. Bouman. Multi-resolution data fusion for super-resolution electron microscopy. InIEEE
[171] C. M. Stein. Estimation of the mean of a multivariate normal distribution.The Annals of Statistics, pages 1135-1151, 1981. · Zbl 0476.62035
[172] Y. Sun, J. Liu, and U. Kamilov. Block coordinate regularization by denoising. InAdvances in Neural Information Processing Systems, volume 32, 2019a.
[173] Y. Sun, B. Wohlberg, and U. S. Kamilov. An online plug-and-play algorithm for regularized image reconstruction.IEEE Transactions on Computational Imaging, 2019b.
[174] Y. Sun, S. Xu, Y. Li, L. Tian, B. Wohlberg, and U. S. Kamilov. Regularized fourier ptychography using an online plug-and-play algorithm. InIEEE International Conference
[175] Y. Sun, J. Liu, Y. Sun, B. Wohlberg, and U. S. Kamilov. Async-red: A provably convergent asynchronous block parallel stochastic method using deep denoising priors.International
[176] Y. Sun, Z. Wu, X. Xu, B. Wohlberg, and U. S. Kamilov. Scalable plug-and-play admm with convergence guarantees.IEEE Transactions on Computational Imaging, 7:849-863, 2021b.
[177] R. Sutton, D. Mcallester, S. Singh, and Y. Mansour. Policy gradient methods for reinforcement learning with function approximation.Advances in Neural Information Processing Systems, 2000.
[178] R. S. Sutton and A. G. Barto. Reinforcement learning: an introduction. 2018. · Zbl 1407.68009
[179] Y. Tai, J. Yang, X. Liu, and C. Xu. Memnet: A persistent memory network for image restoration. InIEEE International Conference on Computer Vision, Oct 2017.
[180] A. M. Teodoro, J. M. Bioucas-Dias, and M. A. Figueiredo. Image restoration and reconstruction using variable splitting and class-adapted image priors. InIEEE International
[181] A. M. Teodoro, J. M. Bioucas-Dias, and M. A. Figueiredo. A convergent image fusion algorithm using scene-adapted gaussian-mixture-based denoising.IEEE Transactions on · Zbl 1409.94587
[182] A. N. Tikhonov and V. Y. Arsenin. Solutions of ill-posed problems.New York, pages 1-30, 1977. · Zbl 0354.65028
[183] A. N. Tikhonov and A. Goncharsky. Ill-posed problems in the natural sciences.appn, 1987.
[184] T. Tirer and R. Giryes. Image restoration by iterative denoising and backward projections. IEEE Transactions on Image Processing, 28(3):1220-1234, 2018. · Zbl 1409.94590
[185] S. V. Venkatakrishnan, C. A. Bouman, and B. Wohlberg. Plug-and-play priors for model based reconstruction. InIEEE Global Conference on Signal and Information Processing, pages 945-948, 2013.
[186] C. R. Vogel. Non-convergence of the l-curve regularization parameter selection method. Inverse Problems, 12(4):535, 1996. · Zbl 0867.65025
[187] C. Vonesch, S. Ramani, and M. Unser. Recursive risk estimation for non-linear image deconvolution with a wavelet-domain sparsity constraint. InIEEE International Conference
[188] G. Wahba.Spline models for observational data. SIAM, 1990. · Zbl 0813.62001
[189] S. Wang, S. Fidler, and R. Urtasun. Proximal deep structured models. InAdvances in Neural Information Processing Systems, pages 865-873, 2016.
[190] X. Wang and S. H. Chan. Parameter-free plug-and-play admm for image restoration. InIEEE International Conference on Acoustics, Speech and Signal Processing, pages 1323-1327,
[191] K. Wei, A. Aviles-Rivero, J. Liang, Y. Fu, C.-B. Schnlieb, and H. Huang. Tuning-free plug-and-play proximal algorithm for inverse imaging problems.International Conference · Zbl 07625169
[192] K. Wei, Y. Fu, J. Yang, and H. Huang. A physics-based noise formation model for extreme low-light raw denoising. InIEEE Conference on Computer Vision and Pattern Recognition, pages 2758-2767, 2020b.
[193] K. Wei, Y. Fu, Y. Zheng, and J. Yang. Physics-based noise modeling for extreme low-light photography.IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021.
[194] M. B. Wilk and R. Gnanadesikan. Probability plotting methods for the analysis of data. Biometrika, 55(1):1-17, 1968.
[195] G. A. Wright. Magnetic resonance imaging.IEEE Signal Processing Magazine, 14(1):56-66, 1997. doi: 10.1109/79.560324.
[196] Z. Wu, Y. Sun, A. Matlock, J. Liu, L. Tian, and U. S. Kamilov. Simba: scalable inversion in optical tomography using deep denoising priors.IEEE Journal of Selected Topics in Signal Processing, 2020.
[197] J. Xiang, Y. Dong, and Y. Yang. Fista-net: Learning a fast iterative shrinkage thresholding network for inverse problems in imaging.IEEE Transactions on Medical Imaging, 40(5): 1329-1339, 2021.
[198] S. Xiang and H. Li. On the effects of batch and weight normalization in generative adversarial networks.arXiv preprint arXiv:1704.03971, 2017.
[199] X. Xie, J. Wu, G. Liu, Z. Zhong, and Z. Lin. Differentiable linearized admm. InInternational Conference on Machine Learning, pages 6902-6911, 2019.
[200] Y. Xu, M. Liu, Q. Lin, and T. Yang. Admm without a fixed penalty parameter: Faster convergence with new adaptive penalization. InAdvances in Neural Information Processing Systems, pages 1267-1277, 2017a.
[201] Z. Xu, M. Figueiredo, and T. Goldstein. Adaptive admm with spectral penalty parameter selection. InArtificial Intelligence and Statistics, pages 718-727. PMLR, 2017b.
[202] Z. Xu, M. A. Figueiredo, X. Yuan, C. Studer, and T. Goldstein. Adaptive relaxed admm: Convergence theory and practical implementation. InIEEE Conference on Computer
[203] D. Yang and J. Sun. Proximal dehaze-net: A prior learning-based deep network for single image dehazing. InEuropean Conference on Computer Vision, pages 702-717, 2018.
[204] F. Yang, Y. M. Lu, L. Sbaiz, and M. Vetterli. Bits from photons: Oversampled image acquisition using binary poisson statistics.IEEE Transactions on Image Processing, 21 · Zbl 1373.94849
[205] J. Yang, Y. Zhang, and W. Yin. A fast alternating direction method for tvl1-l2 signal reconstruction from partial fourier data.IEEE Journal of Selected Topics in Signal
[206] Y. Yang, J. Sun, H. Li, and Z. Xu. Deep admm-net for compressive sensing mri. InAdvances in Neural Information Processing Systems, pages 10-18. 2016.
[207] Y. Yang, R. Tao, K. Wei, and Y. Fu. Dynamic proximal unrolling network for compressive imaging.arXiv preprint arXiv:2107.11007, 2021.
[208] K. Yu, C. Dong, L. Lin, and C. C. Loy. Crafting a toolchain for image restoration by deep reinforcement learning. InIEEE Conference on Computer Vision and Pattern Recognition, pages 2443-2452, 2018.
[209] K. Yu, X. Wang, C. Dong, X. Tang, and C. C. Loy. Path-restore: Learning network path selection for image restoration.IEEE Transactions on Pattern Analysis and Machine
[210] X. Yuan, Y. Liu, J. Suo, and Q. Dai. Plug-and-play algorithms for large-scale snapshot compressive imaging. InIEEE Conference on Computer Vision and Pattern Recognition, pages 1447-1457, 2020.
[211] J. Zhang and B. Ghanem. Ista-net: Interpretable optimization-inspired deep network for image compressive sensing. InIEEE Conference on Computer Vision and Pattern
[212] K. Zhang, W. Zuo, Y. Chen, D. Meng, and L. Zhang. Beyond a gaussian denoiser: Residual learning of deep cnn for image denoising.IEEE Transactions on Image Processing, 26(7): 3142-3155, 2017a. · Zbl 1409.94754
[213] K. Zhang, W. Zuo, S. Gu, and L. Zhang. Learning deep cnn denoiser prior for image restoration. InIEEE Conference on Computer Vision and Pattern Recognition, 2017b.
[214] K. Zhang, W. Zuo, and L. Zhang. Ffdnet: Toward a fast and flexible solution for cnn-based image denoising.IEEE Transactions on Image Processing, 27(9):4608-4622, 2018.
[215] K. Zhang, W. Zuo, and L. Zhang. Deep plug-and-play super-resolution for arbitrary blur kernels. InIEEE Conference on Computer Vision and Pattern Recognition, 2019a.
[216] K. Zhang, L. V. Gool, and R. Timofte. Deep unfolding network for image super-resolution. InIEEE Conference on Computer Vision and Pattern Recognition, pages 3217-3226, 2020.
[217] K. Zhang, Y. Li, W. Zuo, L. Zhang, L. Van Gool, and R. Timofte. Plug-and-play image restoration with deep denoiser prior.IEEE Transactions on Pattern Analysis and Machine
[218] X. Zhang, Y. Lu, J. Liu, and B. Dong. Dynamically unfolding recurrent restorer: A moving endpoint control method for image restoration. InInternational Conference on Learning
[219] G. Zheng, R. Horstmeyer, and C. Yang. Wide-field, high-resolution fourier ptychographic microscopy.Nature Photonics, 7(9):739-745, 2013.
[220] D. Zoran and Y. Weiss. From learning models of natural image patches to whole image restoration. InIEEE International Conference on Computer Vision, pages 479-486, 2011.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.