×

Effect of surfactants on the deformation of drops and bubbles in Navier-Stokes flow. (English) Zbl 1134.76324

Summary: A numerical method is implemented for investigating the effect of an insoluble surfactant on the deformation of, and structure of the flow around a two-dimensional drop with arbitrary viscosity in simple shear flow. In the computational model, the flow occurs in a two-dimensional channel confined between two parallel plane walls in relative motion. The algorithm combines Peskin’s immersed-interface method with the diffuse-interface 1approximation, wherein the step discontinuity in the fluid properties is replaced by a transition zone defined in terms of a mollifying function. The generalized Navier–Stokes equation incorporating the jump in the interfacial traction is solved by a finite-difference method, while the interface surfactant transport equation is solved by a finite-volume method. Results of numerical simulations document the effect of the surfactant on the drop deformation and structure of the flow over a broad range of conditions, and demonstrate the possibility of interface immobilization due to Marangoni tractions even for mild variations in the surfactant concentration.

MSC:

76D05 Navier-Stokes equations for incompressible viscous fluids
76M25 Other numerical methods (fluid mechanics) (MSC2010)

Software:

FDLIB
Full Text: DOI

References:

[1] Velankar, S.; Puyvelde, V. P.; Mewis, J.; Moldenaers, P., Effect of compatibilization on the breakup of polymeric drops in shear flow, J Rheol, 45, 1007-1019 (2001)
[2] Adamson, A. W., Physical chemistry of surfaces (1976), John Wiley & Sons: John Wiley & Sons New York
[3] Li, X.; Pozrikidis, C., Effect of surfactants on drop deformation and on the rheology of dilute emulsions in Stokes flow, J Fluid Mech, 341, 165-194 (1997) · Zbl 0892.76013
[4] Johnson, A.; Borhan, A., Effect of insoluble surfactants on the pressure-driven motion of a drop in a tube in the limit of high surface coverage, J Colloid Interf Sci, 218, 184-200 (1999)
[5] Pozrikidis, C., Numerical investigation of the effect of surfactants on the stability and rheology of emulsions and foam, J Eng Math, 41, 237-258 (2001) · Zbl 1045.76048
[6] Pozrikidis C. Effect of inertia on the Marangoni instability of the two-layer channel flow. Part I. Numerical simulations. J Eng Math 2005; in press.; Pozrikidis C. Effect of inertia on the Marangoni instability of the two-layer channel flow. Part I. Numerical simulations. J Eng Math 2005; in press. · Zbl 1073.76039
[7] Eggleton, C. D.; Tsai, T. M.; Stebe, K. J., Tip streaming from a drop in the presence of surfactants, Phys Rev Lett, 87, 048302 (2001)
[8] Yon, S.; Pozrikidis, C., A finite-volume/boundary-element method for flow past interfaces in the presence of surfactants, with application to shear flow past a viscous drop, Comput Fluids, 27, 879-902 (1998) · Zbl 0978.76058
[9] Drumright-Clarke, M. A.; Renardy, Y., The effect of insoluble surfactant at dilute concentration on drop breakup under shear with inertia, Phys Fluids, 16, 14-21 (2004) · Zbl 1186.76152
[10] Kruijt-Stegeman, Y. W.; van de Vosse, F. N.; Meijer, H. E.H., Droplet behavior in the presence of insoluble surfactants, Phys Fluids, 16, 2785-2796 (2004) · Zbl 1186.76294
[11] Scardovelli, R.; Zaleski, S., Interface reconstruction with least-square and split Eulerian Lagrangian advection, Int J Numer Methods Fluids, 41, 251-274 (2003) · Zbl 1047.76080
[12] Sheth, K.; Pozrikidis, C., Effects of inertia on the deformation of liquid drops in simple shear flow, Comput Fluids, 24, 101-119 (1995) · Zbl 0826.76054
[13] Sarkar, K.; Schowalter, W. R., Deformation of a two-dimensional viscoelastic drop at non-zero Reynolds number in time-periodic extensional flows, J Non-Newton Fluid Mech, 95, 315-342 (2000) · Zbl 0994.76011
[14] Sarkar, K.; Schowalter, W. R., Deformation of a two-dimensional drop at non-zero Reynolds number in time-periodic extensional flows: numerical simulation, J Fluid Mech, 436, 177-206 (2001) · Zbl 1003.76021
[15] Wagner, A. J.; Wilson, L. M.; Cates, M. E., Role of inertia in two-dimensional deformation and breakdown of a droplet, Phys Rev E, 68, 045301 (2003)
[16] Richardson, S., Two-dimensional bubbles in slow viscous flows, J Fluid Mech, 33, 476-493 (1968) · Zbl 0159.58104
[17] Breyiannis, G.; Pozrikidis, C., Simple shear flow of suspensions of elastic capsules, Theor Comput Fluid Dynam, 13, 327-347 (2000) · Zbl 0963.76091
[18] Charles, R.; Pozrikidis, C., Effect of the dispersed phase viscosity on the simple shear flow of suspensions of liquid drops, J Fluid Mech, 365, 205-233 (1998) · Zbl 0936.76087
[19] Li, X.; Charles, R.; Pozrikidis, C., Simple shear flow of suspensions of liquid drops, J Fluid Mech, 320, 395-416 (1996) · Zbl 0883.76085
[20] Li, X.; Zhou, H.; Pozrikidis, C., A numerical study of the shearing motion of emulsions and foams, J Fluid Mech, 286, 379-404 (1995) · Zbl 0850.76752
[21] Zhou, H.; Pozrikidis, C., The flow of suspensions in channels: single files of drops, Phys Fluids A, 5, 311-324 (1993)
[22] Zhou, H.; Pozrikidis, C., The flow of ordered and random suspensions of liquid drops in a channel, J Fluid Mech, 255, 103-127 (1993)
[23] Zhou, H.; Pozrikidis, C., Pressure-driven flow of suspensions of liquid drops, Phys Fluids, 6, 80-94 (1994)
[24] Pozrikidis, C.; Sheth, K., A note on light transmission through an evolving suspension of liquid drops, Chem Eng Commun, 148-150, 477-486 (1996)
[25] Li, X.; Pozrikidis, C., Wall-bounded and channel flow of suspensions of liquid drops, Int J Multiphase Flow, 26, 1247-1279 (2000) · Zbl 1137.76657
[26] Li, X.; Pozrikidis, C., Film flow of a suspension of liquid drops, Phys Fluids, 14, 61-74 (2002) · Zbl 1184.76324
[27] Pozrikidis, C., Expansion of a two-dimensional foam, Eng Anal Bound Elem, 26, 495-504 (2002) · Zbl 1066.76039
[28] Pozrikidis, C., Computation of the pressure inside bubbles and pores in Stokes flow, J Fluid Mech, 474, 319-337 (2003) · Zbl 1038.76016
[29] Pozrikidis, C., Interfacial dynamics for Stokes flow, J Comput Phys, 169, 250-301 (2001) · Zbl 1046.76012
[30] Pozrikidis, C., Introduction to theoretical and computational fluid dynamics (1997), Oxford University Press: Oxford University Press New York · Zbl 0886.76002
[31] Pozrikidis, C., Instability of multi-layer channel and film flows, Adv Appl Mech, 40, 179-239 (2004)
[32] Peskin, C. S., Numerical analysis of blood flow in the heart, J Comput Phys, 25, 220-252 (1977) · Zbl 0403.76100
[33] Peskin, C. S., The immersed boundary method, Acta Numer, 11, 479-517 (2002) · Zbl 1123.74309
[34] Blyth, M.; Pozrikidis, C., Evolution equations for the surface concentration of an insoluble surfactant; stability of an elongating thread and a stretched interface, Theor Comput Fluid Dynam, 17, 147-164 (2004) · Zbl 1116.76441
[35] Pozrikidis, C., Numerical computation in science and engineering (1998), Oxford University Press: Oxford University Press New York · Zbl 0971.65001
[36] Kennedy, M. R.; Pozrikidis, C.; Skalak, R., Motion and deformation of liquid drops, and the rheology of dilute emulsions in simple shear flow, Comput Fluids, 23, 251-278 (1994) · Zbl 0810.76003
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.