×

Comparative study of metaheuristics for the curve-fitting problem: modeling neurotransmitter diffusion and synaptic receptor activation. (English) Zbl 1433.92013

Summary: Synapses are key elements in the information transmission in the nervous system. Among the different approaches to study them, the use of computational simulations is identified as the most promising technique. Simulations, however, do not provide generalized models of the underlying biochemical phenomena, but a set of observations, or time-series curves, displaying the behavior of the synapse in the scenario represented. Finding a general model of these curves, like a set of mathematical equations, could be an achievement in the study of synaptic behavior. In this paper, we propose an exploratory analysis in which selected curve models are proposed, and state-of-the-art metaheuristics are used and compared to fit the free coefficients of these curves to the data obtained from simulations. Experimental results demonstrate that several models can fit these data, though a deeper analysis from a biological perspective reveals that some are better suited for this purpose, as they represent more accurately the biological process. Based on the results of this analysis, we propose a set of mathematical equations and a methodology, adequate for modeling several aspects of biochemical synaptic behavior.

MSC:

92C37 Cell biology

Software:

R; Matlab; MCELL; Smoldyn

References:

[1] Fuxe, K.; Dahlström, A.; Höistad, M.; Marcellino, D.; Jansson, A.; Rivera, A.; Diaz-Cabiale, Z.; Jacobsen, K.; Tinner-Staines, B.; Hagman, B.; Leo, G.; Staines, W.; Guidolin, D.; Kehr, J.; Genedani, S.; Belluardo, N.; Agnati, L. F., From the Golgi-Cajal mapping to the transmitter-based characterization of the neuronal networks leading to two modes of brain communication: wiring and volume transmission, Brain Research Reviews, 55, 1, 17-54, (2007) · doi:10.1016/j.brainresrev.2007.02.009
[2] Syková, E.; Nicholson, C., Diffusion in brain extracellular space, Physiological Reviews, 88, 4, 1277-1340, (2008) · doi:10.1152/physrev.00027.2007
[3] Rusakov, D. A.; Savtchenko, L. P.; Zheng, K.; Henley, J. M., Shaping the synaptic signal: molecular mobility inside and outside the cleft, Trends in Neurosciences, 34, 7, 359-369, (2011) · doi:10.1016/j.tins.2011.03.002
[4] Boucher, J.; Kröger, H.; Sík, A., Realistic modelling of receptor activation in hippocampal excitatory synapses: analysis of multivesicular release, release location, temperature and synaptic cross-talk, Brain Structure & Function, 215, 1, 49-65, (2010) · doi:10.1007/s00429-010-0273-x
[5] Renner, M.; Domanov, Y.; Sandrin, F.; Izeddin, I.; Bassereau, P.; Triller, A., Lateral diffusion on tubular membranes: quantification of measurements bias, PLoS ONE, 6, 9, (2011) · doi:10.1371/journal.pone.0025731
[6] Stiles, J. R.; Bartol, T. M., Monte carlo methods for simulating realistic synaptic microphysiology using MCell, Computational Neuroscience: Realistic Modeling for Experimentalists, 87-127, (2001), CRC Press
[7] Kerr, R. A.; Bartol, T. M.; Kaminsky, B.; Dittrich, M.; Chang, J. J.; Baden, S. B.; Sejnowski, T. J.; Stiles, J. R., Fast Monte Carlo simulation methods for biological reaction-diffusion systems in solution and on surfaces, SIAM Journal on Scientific Computing, 30, 6, 3126-3149, (2008) · Zbl 1178.65004 · doi:10.1137/070692017
[8] Plimpton, S. J.; Slepoy, A., Microbial cell modeling via reacting diffusive particles, Journal of Physics: Conference Series, 16, 1, 305-309, (2005) · doi:10.1088/1742-6596/16/1/042
[9] Andrews, S. S.; Bray, D., Stochastic simulation of chemical reactions with spatial resolution and single molecule detail, Physical Biology, 1, 3-4, 137-151, (2004)
[10] Andrews, S. S.; Addy, N. J.; Brent, R.; Arkin, A. P., Detailed simulations of cell biology with smoldyn 2.1, PLoS Computational Biology, 6, 3, (2010)
[11] Montes, J.; Gomez, E.; Merchán-Pérez, A.; DeFelipe, J.; Peña, J.-M., A machine learning method for the prediction of receptor activation in the simulation of synapses, PLoS ONE, 8, 7, 1-14, (2013) · doi:10.1371/journal.pone.0068888
[12] LaTorre, A.; Muelas, S.; Peña, J. M., A comprehensive comparison of large scale global optimizers, Information Sciences, (2014) · doi:10.1016/j.ins.2014.09.031
[13] Sequeira, C.; Sanchez-Quesada, F.; Sancho, M.; Hidalgo, I.; Ortiz, T., A genetic algorithm approach for localization of deep sources in MEG, Physica Scripta, T118, 140-142, (2005) · doi:10.1238/Physica.Topical.118a00140
[14] Cuevas, E.; Zaldivar, D.; Pérez-Cisneros, M., A novel multi-threshold segmentation approach based on differential evolution optimization, Expert Systems with Applications, 37, 7, 5265-5271, (2010) · doi:10.1016/j.eswa.2010.01.013
[15] Ochoa, A.; Tejera, M.; Soto, M., A fitness function model for detecting ellipses with estimation of distribution algorithms, Proceedings of the 6th IEEE Congress on Evolutionary Computation (CEC ’10) · doi:10.1109/cec.2010.5586244
[16] LaTorre, A.; Muelas, S.; Peña, J.-M.; Santana, R.; Merchán-Pérez, Á.; Rodríguez, J.-R., A differential evolution algorithm for the detection of synaptic vesicles, Proceedings of the IEEE Congress of Evolutionary Computation (CEC ’11), IEEE · doi:10.1109/cec.2011.5949818
[17] Santana, R.; Muelas, S.; LaTorre, A.; Peña, J. M., A direct optimization approach to the P300 speller, Proceedings of the 13th Annual Genetic and Evolutionary Computation Conference (GECCO ’11) · doi:10.1145/2001576.2001811
[18] Muelas, S.; Peña, J. M.; Robles, V.; Muzhetskaya, K.; LaTorre, A.; de Miguel, P.; Herskovits, J.; Canelas, A.; Cortes, H.; Aroztegui, M., Optimizing the design of composite panels using an improved genetic algorithm, Proceedings of the International Conference on Engineering Optimization (EngOpt ’08), COPPE/UFRJ
[19] Wang, W.; Xiang, Z.; Xu, X., Self-adaptive differential evolution and its application to job-shop scheduling, Proceedings of the 7th International Conference on System Simulation and Scientific Computing—Asia Simulation Conference (ICSC ’08), IEEE · doi:10.1109/asc-icsc.2008.4675475
[20] Elsayed, S. M.; Sarker, R. A.; Essam, D. L., GA with a new multi-parent crossover for solving IEEE-CEC2011 competition problems, Proceedings of the IEEE Congress of Evolutionary Computation (CEC ’11) · doi:10.1109/cec.2011.5949731
[21] LaTorre, A.; Muelas, S.; Peña, J. M., Benchmarking a hybrid DERHC algorithm on real world problems, Proceedings of the IEEE Congress on Evolutionary Computation (CEC ’11), IEEE
[22] Parragh, S. N.; Doerner, K. F.; Hartl, R. F., Variable neighborhood search for the dial-a-ride problem, Computers & Operations Research, 37, 6, 1129-1138, (2010) · Zbl 1178.90045 · doi:10.1016/j.cor.2009.10.003
[23] Muelas, S.; Latorre, A.; Peña, J.-M., A variable neighborhood search algorithm for the optimization of a dial-a-ride problem in a large city, Expert Systems with Applications, 40, 14, 5516-5531, (2013) · doi:10.1016/j.eswa.2013.04.015
[24] Dias, J. C.; Machado, P.; Silva, D. C.; Abreu, P. H., An inverted ant colony optimization approach to traffic, Engineering Applications of Artificial Intelligence, 36, 122-133, (2014) · doi:10.1016/j.engappai.2014.07.005
[25] Zhang, S.; Lee, C.; Chan, H.; Choy, K.; Wu, Z., Swarm intelligence applied in green logistics: a literature review, Engineering Applications of Artificial Intelligence, 37, 154-169, (2015) · doi:10.1016/j.engappai.2014.09.007
[26] Gálvez, A.; Iglesias, A.; Puig-Pey, J., Iterative two-step genetic-algorithm-based method for efficient polynomial B-spline surface reconstruction, Information Sciences, 182, 56-76, (2012) · doi:10.1016/j.ins.2010.09.031
[27] Yang, J.; Liu, F.; Tao, X.; Wang, X., The application of evolutionary algorithm in B-spline curve fitting, Proceedings of the 9th International Conference on Fuzzy Systems and Knowledge Discovery (FSKD ’12) · doi:10.1109/fskd.2012.6234112
[28] Gálvez, A.; Iglesias, A., A new iterative mutually coupled hybrid GA-PSO approach for curve fitting in manufacturing, Applied Soft Computing Journal, 13, 3, 1491-1504, (2013) · doi:10.1016/j.asoc.2012.05.030
[29] Zhao, L.; Jiang, J.; Song, C.; Bao, L.; Gao, J., Parameter optimization for Bezier curve fitting based on genetic algorithm, Advances in Swarm Intelligence. Advances in Swarm Intelligence, Lecture Notes in Computer Science, 7928, 451-458, (2013), Berlin, Germany: Springer, Berlin, Germany · doi:10.1007/978-3-642-38703-6_53
[30] Centro de Supercomputación y. Visualización de Madrid (CeSViMa)
[31] Jonas, P.; Major, G.; Sakmann, B., Quantal components of unitary EPSCs at the mossy fibre synapse on CA3 pyramidal cells of rat hippocampus, The Journal of Physiology, 472, 1, 615-663, (1993) · doi:10.1113/jphysiol.1993.sp019965
[32] Franks, K. M.; Bartol, T. M.; Sejnowski, T. J., A monte carlo model reveals independent signaling at central glutamatergic synapses, Biophysical Journal, 83, 5, 2333-2348, (2002) · doi:10.1016/S0006-3495(02)75248-X
[33] Rusakov, D. A.; Kullmann, D. M., Extrasynaptic glutamate diffusion in the hippocampus: ultrastructural constraints, uptake, and receptor activation, The Journal of Neuroscience, 18, 9, 3158-3170, (1998)
[34] Zheng, K.; Scimemi, A.; Rusakov, D. A., Receptor actions of synaptically released glutamate: the role of transporters on the scale from nanometers to microns, Biophysical Journal, 95, 10, 4584-4596, (2008) · doi:10.1529/biophysj.108.129874
[35] Momiyama, A.; Silver, R. A.; Häusser, M.; Notomi, T.; Wu, Y.; Shigemoto, R.; Cull-Candy, S. G., The density of AMPA receptors activated by a transmitter quantum at the climbing fibre—Purkinje cell synapse in immature rats, The Journal of Physiology, 549, 1, 75-92, (2003) · doi:10.1113/jphysiol.2002.033472
[36] Bates, D. M.; Watts, D. G., Nonlinear Regression Analysis and Its Applications. Nonlinear Regression Analysis and Its Applications, Wiley Series in Probability and Mathematical Statistics: Applied Probability and Statistics, (1988), New York, NY, USA: Wiley-Interscience, New York, NY, USA · Zbl 0728.62062 · doi:10.1002/9780470316757
[37] Bates, D. M.; Chambers, J. M.; Chambers, S. J. M.; Hastie, T. J., Nonlinear models, Statistical Models, (1992), Wadsworth & Brooks/cole · Zbl 0776.62007
[38] MathWorks, MATLAB and Statistics Toolbox Release 2013a, (2014), MathWorks
[39] R Core Team, R: A Language and Environment for Statistical Computing, (2011), R Foundation for Statistical Computing
[40] Holland, J. H., Adaptation in Natural and Artificial Systems, (1975), Ann Arbor, Mich, USA: The University of Michigan Press, Ann Arbor, Mich, USA · Zbl 0317.68006
[41] Herrera, F.; Lozano, M., Gradual distributed real-coded genetic algorithms, IEEE Transactions on Evolutionary Computation, 4, 1, 43-63, (2000) · doi:10.1109/4235.843494
[42] Storn, R.; Price, K. V., Differential evolution—a simple and efficient heuristic for global optimization over continuous spaces, Journal of Global Optimization, 11, 4, 341-359, (1997) · Zbl 0888.90135 · doi:10.1023/a:1008202821328
[43] Brest, J.; Greiner, S.; Bošković, B.; Mernik, M.; Zumer, V., Self-adapting control parameters in differential evolution: a comparative study on numerical benchmark problems, IEEE Transactions on Evolutionary Computation, 10, 6, 646-657, (2006) · doi:10.1109/tevc.2006.872133
[44] Wang, H.; Wu, Z.; Rahnamayan, S.; Kang, L., A scalability test for accelerated de using generalized opposition-based learning, Proceedings of the 9th International Conference on Intelligent Systems Design and Applications (ISDA ’09) · doi:10.1109/isda.2009.216
[45] Solis, F. J.; Wets, R. J. B., Minimization by random search techniques, Mathematics of Operations Research, 6, 1, 19-30, (1981) · Zbl 0502.90070 · doi:10.1287/moor.6.1.19
[46] Tseng, L.-Y.; Chen, C., Multiple trajectory search for large scale global optimization, Proceedings of the IEEE Congress on Evolutionary Computation (CEC ’08), IEEE · doi:10.1109/cec.2008.4631210
[47] Hansen, N.; Ostermeier, A., Adapting arbitrary normal mutation distributions in evolution strategies: the covariance matrix adaptation, Proceedings of the IEEE International Conference on Evolutionary Computation (ICEC ’96)
[48] Hansen, N.; Ostermeier, A., Completely derandomized self-adaptation in evolution strategies, Evolutionary Computation, 9, 2, 159-195, (2001) · doi:10.1162/106365601750190398
[49] Auger, A.; Hansen, N., A restart CMA evolution strategy with increasing population size, Proceedings of the IEEE Congress on Evolutionary Computation (CEC ’05), IEEE Press
[50] Theil, H., Economic Forecasts and Policy. Economic Forecasts and Policy, Contributions to Economic Analysis Series, (1961), New York, NY, USA: North-Holland, New York, NY, USA
[51] Taguchi, G.; Chowdhury, S.; Wu, Y., Taguchi’s Quality Engineering Handbook, (2005), John Wiley & Sons · Zbl 1121.62115 · doi:10.1002/9780470258354
[52] Zar, J. H., Biostatistical Analysis. Biostatistical Analysis, Pearson New International Edition, (2013), Prentice-Hall
[53] Daniel, W. W., Applied Nonparametric Statistics, (1990), Duxbury Thomson Learning · Zbl 0436.62037
[54] García, S.; Molina, D.; Lozano, M.; Herrera, F., A study on the use of non-parametric tests for analyzing the evolutionary algorithms’ behaviour: a case study on the CEC’2005 Special Session on Real Parameter Optimization, Journal of Heuristics, 15, 6, 617-644, (2009) · Zbl 1191.68828 · doi:10.1007/s10732-008-9080-4
[55] Wilcoxon, F., Individual comparisons by ranking methods, Biometrics Bulletin, 1, 6, 80-83, (1945) · doi:10.2307/3001968
[56] LaTorre, A.; Muelas, S.; Peña, J.-M., Evaluating the multiple offspring sampling framework on complex continuous optimization functions, Memetic Computing, 5, 4, 295-309, (2013) · doi:10.1007/s12293-013-0120-8
[57] Muelas, S.; Peña, J. M.; Robles, V.; LaTorre, A.; de Miguel, P.; Corchado, E.; Corchado, J. M.; Abraham, A., Machine learning methods to analyze migration parameters in parallel genetic algorithms, Proceedings of the International Workshop on Hybrid Artificial Intelligence Systems 2007, 199-206, (2007), Salamanca, Spain: Springer, Salamanca, Spain
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.