×

Analysis and design of jump coefficients in discrete stochastic diffusion models. (English) Zbl 1330.65017

Summary: In computational systems biology, the mesoscopic model of reaction-diffusion kinetics is described by a continuous time, discrete space Markov process. To simulate diffusion stochastically, the jump coefficients are obtained by a discretization of the diffusion equation. Using unstructured meshes to represent complicated geometries may lead to negative coefficients when using piecewise linear finite elements. Several methods have been proposed to modify the coefficients to enforce the nonnegativity needed in the stochastic setting.
In this paper, we present a method to quantify the error introduced by that change. We interpret the modified discretization matrix as the exact finite element discretization of a perturbed equation. The forward error, the error between the analytical solutions to the original and the perturbed equations, is bounded by the backward error, the error between the diffusion of the two equations. We present a backward analysis algorithm to compute the diffusion coefficient from a given discretization matrix. The analysis suggests a new way of deriving nonnegative jump coefficients that minimizes the backward error. The theory is tested in numerical experiments indicating that the new method is superior and also minimizes the forward error.

MSC:

65C30 Numerical solutions to stochastic differential and integral equations
60H15 Stochastic partial differential equations (aspects of stochastic analysis)
60H35 Computational methods for stochastic equations (aspects of stochastic analysis)
65C40 Numerical analysis or methods applied to Markov chains
60J60 Diffusion processes
65M60 Finite element, Rayleigh-Ritz and Galerkin methods for initial value and initial-boundary value problems involving PDEs
65M15 Error bounds for initial value and initial-boundary value problems involving PDEs
35R60 PDEs with randomness, stochastic partial differential equations

Software:

FEniCS; STEPS; Smoldyn; MesoRD

References:

[1] S. S. Andrews, N. J. Addy, R. Brent, and A. P. Arkin, {\it Detailed simulations of cell biology with Smoldyn} 2.1, PLoS Comput. Biol., 6 (2010), e1000705.
[2] S. Boyd and L. Vandenberghe, {\it Convex Optimization}, Cambridge University Press, Cambridge, UK, 2004. · Zbl 1058.90049
[3] J. Brandts, S. Korotov, M. Křížek, and J. Šolc, {\it On nonobtuse simplicial partitions}, SIAM Rev., 51 (2009), pp. 317-335. · Zbl 1172.51012
[4] E. Burman and A. Ern, {\it Stabilized Galerkin approximation of convection-diffusion-reaction equations: Discrete maximum principle and convergence}, Math. Comp., 74 (2005), pp. 1637-1652. · Zbl 1078.65088
[5] Y. Cao, D. T. Gillespie, and L. R. Petzold, {\it The slow-scale stochastic simulation algorithm}, J. Chem. Phys., 122 (2005), 014116. · Zbl 1088.80004
[6] A. Donev, V. V. Bulatov, T. Oppelstrup, G. H. Gilmer, B. Sadigh, and M. H. Kalos, {\it A first-passage kinetic Monte Carlo algorithm for complex diffusion-reaction systems}, J. Comput. Phys., 229 (2010), pp. 3214-3236. · Zbl 1186.82046
[7] J. Elf and M. Ehrenberg, {\it Spontaneous separation of bi-stable biochemical systems into spatial domains of opposite phases}, Syst. Biol., 1 (2004), pp. 230-236.
[8] M. B. Elowitz, A. J. Levine, E. D. Siggia, and P. S. Swain, {\it Stochastic gene expression in a single cell}, Science, 297 (2002), pp. 1183-1186.
[9] S. Engblom, L. Ferm, A. Hellander, and P. Lötstedt, {\it Simulation of stochastic reaction-diffusion processes on unstructured meshes}, SIAM J. Sci. Comput., 31 (2009), pp. 1774-1797. · Zbl 1190.65015
[10] H. Erten and A. Üngör, {\it Quality triangulations with locally optimal Steiner points}, SIAM J. Sci. Comput., 31 (2009), pp. 2103-2130. · Zbl 1191.52023
[11] L. C. Evans, {\it Partial Differential Equations}, Grad. Stud. Math. 19, AMS, Providence, RI, 1998. · Zbl 0902.35002
[12] R. Eymard, T. Gallouët, and R. Herbin, {\it A cell-centred finite-volume approximation for anisotropic diffusion operators on unstructured meshes in any dimension}, IMA J. Numer. Anal., 26 (2006), pp. 326-353. · Zbl 1093.65110
[13] Z. Gao and J. Wu, {\it A second-order positivity-preserving finite volume scheme for diffusion equations on general meshes}, SIAM J. Sci. Comput., 37 (2015), pp. A420-A438. · Zbl 1315.65077
[14] C. W. Gardiner, K. J. McNeil, D. F. Walls, and I. S. Matheson, {\it Correlations in stochastic theories of chemical reactions}, J. Stat. Phys., 14 (1976), pp. 307-331.
[15] M. A. Gibson and J. Bruck, {\it Efficient exact stochastic simulation of chemical systems with many species and many channels}, J. Phys. Chem., 104 (2000), pp. 1876-1889.
[16] D. T. Gillespie, {\it A general method for numerically simulating the stochastic time evolution of coupled chemical reactions}, J. Comput. Phys., 22 (1976), pp. 403-434.
[17] D. T. Gillespie, A. Hellander, and L. R. Petzold, {\it Perspective: Stochastic algorithms for chemical kinetics}, J. Chem. Phys., 138 (2013), 170901.
[18] G. H. Golub and C. F. Van Loan, {\it Matrix Computations}, Johns Hopkins University Press, Baltimore, MD, 1989. · Zbl 0733.65016
[19] J. L. Guermond and M. Nazarov, {\it A maximum-principle preserving \({C}^0\) finite element method for scalar conservation equations}, Comput. Methods Appl. Mech. Engrg., 272 (2014), pp. 198-213. · Zbl 1296.65133
[20] J. Hattne, D. Fange, and J. Elf, {\it Stochastic reaction-diffusion simulation with MesoRD}, Bioinformatics, 21 (2005), pp. 2923-2924.
[21] I. Hepburn, W. Chen, S. Wils, and E. De Schutter, {\it STEPS: Efficient simulation of stochastic reaction-diffusion models in realistic morphologies}, BMC Syst. Biol., 6 (2012), 36.
[22] S. A. Isaacson and C. S. Peskin, {\it Incorporating diffusion in complex geometries into stochastic chemical kinetics simulations}, SIAM J. Sci. Comput., 28 (2006), pp. 47-74. · Zbl 1109.65008
[23] R. A. Kerr, T. M. Bartol, B. Kaminsky, M. Dittrich, J.-C. J. Chang, S. B. Baden, T. J. Sejnowski, and J. R. Stiles, {\it Fast Monte Carlo simulation methods for biological reaction-diffusion systems in solution and on surfaces}, SIAM J. Sci. Comput., 30 (2008), pp. 3126-3149. · Zbl 1178.65004
[24] E. Kieri, {\it Accuracy Aspects of the Reaction-Diffusion Master Equation on Unstructured Meshes}, MSc thesis, Tech. report UPTEC F 11014, Uppsala University, Uppsala, Sweden, 2011.
[25] S.-J. Kim, K. Koh, M. Lustig, S. Boyd, and D. Gorinevsky, {\it An interior-point method for large-scale \(ℓ_1\)-regularized least squares}, IEEE J. Selected Topics Signal Process., 1 (2007), pp. 606-617.
[26] D. J. Kiviet, P. Nghe, N. Walker, S. Boulineau, V. Sunderlikova, and S. J. Tans, {\it Stochasticity of metabolism and growth at the single-cell level}, Nature, 514 (2014), pp. 376-379.
[27] S. Korotov, M. Křížek, and P. Neittanmäki, {\it Weakened acute type condition for tetrahedral triangulations and the discrete maximum principle}, Math. Comp., 70 (2000), pp. 107-119. · Zbl 1001.65125
[28] T. G. Kurtz, {\it Solutions of ordinary differential equations as limits of pure jump Markov processes}, J. Appl. Probab., 7 (1970), pp. 49-58. · Zbl 0191.47301
[29] T. G. Kurtz, {\it Limit theorems for sequences of jump Markov processes approximating ordinary differential processes}, J. Appl. Probab., 8 (1971), pp. 344-356. · Zbl 0219.60060
[30] A. Logg, K.-A. Mardal, and G. Wells, {\it Automated Solution of Differential Equations by the Finite Element Method}, Springer, Berlin, 2012. · Zbl 1247.65105
[31] P. Lötstedt and L. Meinecke, {\it Simulation of stochastic diffusion via first exit times}, J. Comput. Phys., 300 (2015), pp. 862-886. · Zbl 1349.92055
[32] H. H. McAdams and A. Arkin, {\it Stochastic mechanisms in gene expression}, Proc. Natl. Acad. Sci. USA, 94 (1997), pp. 814-819.
[33] D. A. McQuarrie, {\it Stochastic approach to chemical kinetics}, J. Appl. Probab., 4 (1967), pp. 413-478. · Zbl 0231.60090
[34] R. Metzler, {\it The future is noisy: The role of spatial fluctuations in genetic switching}, Phys. Rev. Lett., 87 (2001), 068103.
[35] B. Munsky, G. Neuert, and A. van Oudenaarden, {\it Using gene expression noise to understand gene regulation}, Science, 336 (2012), pp. 183-187. · Zbl 1355.92069
[36] B. Øksendal, {\it Stochastic Differential Equations}, 6th ed., Springer, Berlin, 2003. · Zbl 1025.60026
[37] F. Persson, M. Lindén, C. Unoson, and J. Elf, {\it Extracting intracellular diffusive states and transition rates from single molecule tracking data}, Nature Methods, 10 (2013), pp. 265-269.
[38] A. Raj and A. van Oudenaarden, {\it Nature, nurture, or chance: Stochastic gene expression and its consequences}, Cell, 135 (2008), pp. 216-226.
[39] C. Di Rienzo, V. Piazza, E. Gratton, F. Beltram, and F. Cardarelli, {\it Probing short-range protein Brownian motion in the cytoplasm of living cells}, Nature Commun., 5 (2014), 5891.
[40] L. Lanzano S. Ranjit, and E. Gratton, {\it Mapping diffusion in a living cell via the phasor approach}, Biophys. J., 107 (2014), pp. 2775-2785.
[41] J. Schöneberg, A. Ullrich, and F. Noé, {\it Simulation tools for particle-based reaction-diffusion dynamics in continuous space}, BMC Biophys., 7 (2014), 11.
[42] Z. Sheng and G. Yuan, {\it An improved monotone finite volume scheme for diffusion equation on polygonal meshes}, J. Comput. Phys., 231 (2012), pp. 3739-3754. · Zbl 1242.65219
[43] J. R. Shewchuk, {\it What is a good linear element? Interpolation, conditioning, and quality measures}, in Proceedings of the 11th International Meshing Roundtable (Ithaca, NY), Springer-Verlag, New York, 2002, pp. 115-126.
[44] M. Svärd, J. Gong, and J. Nordström, {\it An accuracy evaluation of unstructured node-centred finite volume methods}, Appl. Numer. Math., 58 (2008), pp. 1142-1158. · Zbl 1139.76040
[45] P. S. Swain, M. B. Elowitz, and E. D. Siggia, {\it Intrinsic and extrinsic contributions to stochasticity in gene expression}, Proc. Natl. Acad. Sci. USA, 99 (2002), pp. 12795-12800.
[46] V. Thomée, {\it Galerkin Finite Element Methods for Parabolic Problems}, Springer, Berlin, 1997. · Zbl 0884.65097
[47] L. Vandenberghe and S. Boyd, {\it Semidefinite programming}, SIAM Rev., 38 (1996), pp. 49-95. · Zbl 0845.65023
[48] R. S. Varga, {\it Matrix Iterative Analysis}, Prentice-Hall, Englewood Cliffs, NJ, 1962. · Zbl 0133.08602
[49] J. Xu and L. Zikatanov, {\it A monotone finite element scheme for convection-diffusion equations}, Math. Comp., 68 (1999), pp. 1429-1446. · Zbl 0931.65111
[50] J. S. van Zon and P. R. ten Wolde, {\it Green’s-function reaction dynamics: A particle-based approach for simulating biochemical networks in time and space}, J. Chem. Phys., 123 (2005), 234910.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.