×

Bayesian inference of spreading processes on networks. (English) Zbl 1404.92179

Summary: Infectious diseases are studied to understand their spreading mechanisms, to evaluate control strategies and to predict the risk and course of future outbreaks. Because people only interact with few other individuals, and the structure of these interactions influence spreading processes, the pairwise relationships between individuals can be usefully represented by a network. Although the underlying transmission processes are different, the network approach can be used to study the spread of pathogens in a contact network or the spread of rumours in a social network. We study simulated simple and complex epidemics on synthetic networks and on two empirical networks, a social/contact network in an Indian village and an online social network. Our goal is to learn simultaneously the spreading process parameters and the first infected node, given a fixed network structure and the observed state of nodes at several time points. Our inference scheme is based on approximate Bayesian computation, a likelihood-free inference technique. Our method is agnostic about the network topology and the spreading process. It generally performs well and, somewhat counter-intuitively, the inference problem appears to be easier on more heterogeneous network topologies, which enhances its future applicability to real-world settings where few networks have homogeneous topologies.

MSC:

92D30 Epidemiology
62F15 Bayesian inference
62P10 Applications of statistics to biology and medical sciences; meta analysis
91D30 Social networks; opinion dynamics

Software:

ABCpy; abcrf; epiABC

References:

[1] WEF [wef]. (2016)The global risks report 2016: 11th Edition. Working papers eSocialSciences.
[2] Schmidt AL, Zollo F, Del Vicario M, Bessi A, Scala A, Caldarelli G, Stanley HE, Quattrociocchi W. (2017) Anatomy of news consumption on Facebook. Proc. Natl Acad. Sci. USA 114, 3035-3039. (doi:10.1073/pnas.1617052114) · doi:10.1073/pnas.1617052114
[3] Newman N, Levy DA, Nielsen RK. (2015)Reuters Institute digital news report 2015.
[4] Allcott H, Gentzkow M. (2017)Social media and fake news in the 2016 election. Technical report National Bureau of Economic Research.
[5] Streftaris G, Gibson GJ. (2002)Statistical inference for stochastic epidemic models. In Proc. of the 17th Int. Workshop on Statistical Modelling, Chania, Greece, vol. 609, pp. 633-640. Statistical Modelling Society: Amsterdam, The Netherlands. (http://www.statmod.org/workshops_archive_proceedings_2002.htm)
[6] O’Neill PD. (2002) A tutorial introduction to Bayesian inference for stochastic epidemic models using Markov chain Monte Carlo methods. Math. Biosci. 180, 103-114. (doi:10.1016/S0025-5564(02)00109-8) · Zbl 1021.62094 · doi:10.1016/S0025-5564(02)00109-8
[7] Demiris N, O’Neill PD. (2005) Bayesian inference for epidemics with two levels of mixing. Scand. J. Stat. 32, 265-280. (doi:10.1111/j.1467-9469.2005.00420.x) · Zbl 1091.62114 · doi:10.1111/j.1467-9469.2005.00420.x
[8] Demiris N, O’Neill PD. (2005) Bayesian inference for stochastic multitype epidemics in structured populations via random graphs. J. R. Stat. Soc. Series B Stat. Methodol. 67, 731-745. (doi:10.1111/j.1467-9868.2005.00524.x) · Zbl 1101.62106 · doi:10.1111/j.1467-9868.2005.00524.x
[9] Okamura H, Tateishi K, Dohi T. (2007)Statistical inference of computer virus propagation using non-homogeneous poisson processes. In The 18th IEEE Int. Symposium on Software Reliability (ISSRE) pp. 149-158. New York, NY: IEEE.
[10] Toni T, Welch D, Strelkowa N, Ipsen A, Stumpf MP. (2009) Approximate Bayesian computation scheme for parameter inference and model selection in dynamical systems. J. R. Soc. Interface 6, 187-202. (doi:10.1098/rsif.2008.0172) · doi:10.1098/rsif.2008.0172
[11] Neal P. (2012) Efficient likelihood-free Bayesian computation for household epidemics. Stat. Comput. 22, 1239-1256. (doi:10.1007/s11222-010-9216-x) · Zbl 1252.62112 · doi:10.1007/s11222-010-9216-x
[12] Brooks-Pollock E, Roberts GO, Keeling MJ. (2014) A dynamic model of bovine tuberculosis spread and control in Great Britain. Nature 511, 228-231. (doi:10.1038/nature13529) · doi:10.1038/nature13529
[13] Kypraios T, Neal P, Prangle D. (2017) A tutorial introduction to Bayesian inference for stochastic epidemic models using approximate Bayesian computation. Math. Biosci. 287, 42-53. (doi:10.1016/j.mbs.2016.07.001) · Zbl 1377.92091 · doi:10.1016/j.mbs.2016.07.001
[14] Britton T, O’neill PD. (2002) Bayesian inference for stochastic epidemics in populations with random social structure. Scand. J. Stat. 29, 375-390. (doi:10.1111/1467-9469.00296) · Zbl 1036.62017 · doi:10.1111/1467-9469.00296
[15] Neal P, Roberts G. (2005) A case study in non-centering for data augmentation: stochastic epidemics. Stat. Comput. 15, 315-327. (doi:10.1007/s11222-005-4074-7) · doi:10.1007/s11222-005-4074-7
[16] Lappas T, Terzi E, Gunopulos D, Mannila H. (2010)Finding effectors in social networks. In Proc. of the 16th ACM SIGKDD Int. Conf. on Knowledge Discovery and Data Mining, Washington, DC, pp. 1059-1068. New York, NY: ACM. (doi:10.1145/1835804.1835937) · doi:10.1145/1835804.1835937
[17] Shah D, Zaman T. (2011) Rumors in a network: who’s the culprit? IEEE Trans. Inf. Theory 57, 5163-5181. (doi:10.1109/TIT.2011.2158885) · Zbl 1366.91126 · doi:10.1109/TIT.2011.2158885
[18] Prakash BA, Vreeken J, Faloutsos C. (2012)Spotting culprits in epidemics: How many and which ones? In 2012 IEEE 12th Int. Conf. on Data Mining (ICDM), Brussels, Belgium, pp. 11-20. New York, NY: IEEE. (doi:10.1109/ICDM.2012.136) · doi:10.1109/ICDM.2012.136
[19] Prakash BA, Vreeken J, Faloutsos C. (2014) Efficiently spotting the starting points of an epidemic in a large graph. Knowl. Inf. Syst. 38, 35-59. (doi:10.1007/s10115-013-0671-5) · doi:10.1007/s10115-013-0671-5
[20] Zhou T, Liu JG, Bai WJ, Chen G, Wang BH. (2006) Behaviors of susceptible-infected epidemics on scale-free networks with identical infectivity. Phys. Rev. E 74, 056109. (doi:10.1103/PhysRevE.74.056109) · doi:10.1103/PhysRevE.74.056109
[21] Staples P, Prague M, Victor DG, Onnela JP. (2016)Leveraging contact network information in clustered randomized trials of infectious processes. (http://arxiv.org/abs/1610.00039)
[22] Granovetter M. (1978) Threshold models of collective behavior. Am. J. Sociol. 83, 1420-1443. (doi:10.1086/226707) · doi:10.1086/226707
[23] Hill E, Griffiths F, House T. (2015) Spreading of healthy mood in adolescent social networks. Proc. R. Soc. B 282, 20151180. (doi:10.1098/rspb.2015.1180) · doi:10.1098/rspb.2015.1180
[24] Fink C, Schmidt A, Barash V, Kelly J, Cameron C, Macy M. (2016)Investigating the observability of complex contagion in empirical social networks. In Tenth Int. AAAI Conf. on Web and Social Media, Cologne, Germany, pp. 121-130. Palo Alto, Ca: AAAI. (https://www.aaai.org/ocs/index.php/ICWSM/ICWSM16/paper/view/13143)
[25] Eyre RW, House T, Hill EM, Griffiths FE. (2017) Spreading of components of mood in adolescent social networks. R. Soc. Open Sci. 4, 170336. (doi:10.1098/rsos.170336) · doi:10.1098/rsos.170336
[26] Centola D, Macy M. (2007) Complex contagions and the weakness of long ties 1. Am. J. Sociol. 113, 702-734. (doi:10.1086/521848) · doi:10.1086/521848
[27] Centola D. (2010) The spread of behavior in an online social network experiment. Science 329, 1194-1197. (doi:10.1126/science.1185231) · doi:10.1126/science.1185231
[28] Barash V, Cameron C, Macy M. (2012) Critical phenomena in complex contagions. Soc. Netw. 34, 451-461. (doi:10.1016/j.socnet.2012.02.003) · doi:10.1016/j.socnet.2012.02.003
[29] Barabási AL, Albert R. (1999) Emergence of scaling in random networks. Science 286, 509-512. (doi:10.1126/science.286.5439.509) · Zbl 1226.05223 · doi:10.1126/science.286.5439.509
[30] Erdös P, Rényi A. (1959) On random graphs, I. Publ. Math. (Debrecen) 6, 290-297. · Zbl 0092.15705
[31] Easley D, Kleinberg J. (2010) Networks, crowds, and markets: reasoning about a highly connected world. Cambridge, UK: Cambridge University Press. · Zbl 1205.91007
[32] Banerjee A, Chandrasekhar AG, Duflo E, Jackson MO. (2013) The diffusion of microfinance. Science 341, 1236498. (doi:10.1126/science.1236498) · doi:10.1126/science.1236498
[33] Leskovec J, Mcauley JJ. (2012)Learning to discover social circles in ego networks. In Advances in Neural Information Processing Systems(NIPS), 25, Lake Tahoe, NV, pp. 539-547. New York, NY: Curran Associates. (http://papers.nips.cc/paper/4532-learning-to-discover-social-circles-in-ego-networks.pdf)
[34] Robert CP, Casella G. (2005) Monte Carlo statistical methods. New York, NY: Springer.
[35] Lintusaari J, Gutmann MU, Dutta R, Kaski S, Corander J. (2017) Fundamentals and recent developments in approximate Bayesian computation. Syst. Biol. 66, e66-e82. (doi:10.1093/sysbio/syw077) · doi:10.1093/sysbio/syw077
[36] Martinez EAet al.(2016) Real-time dynamics of lattice gauge theories with a few-qubit quantum computer. Nature 534, 516-519. (doi:10.1038/nature18318) · doi:10.1038/nature18318
[37] Turchin P, Currie TE, Turner EAL, Gavrilets S. (2013) War, space, and the evolution of Old World complex societies. Proc. Natl Acad. Sci. USA 110, 16 384-16 389. (doi:10.1073/pnas.1308825110) · doi:10.1073/pnas.1308825110
[38] Schaye Jet al.(2015) The EAGLE project: simulating the evolution and assembly of galaxies and their environments. Mon. Not. R. Astron. Soc. 446, 521-554. (doi:10.1093/mnras/stu2058) · doi:10.1093/mnras/stu2058
[39] Marin JM, Pudlo P, Robert C, Ryder R. (2012) Approximate Bayesian computational methods. Stat. Comput. 22, 1167-1180. (doi:10.1007/s11222-011-9288-2) · Zbl 1252.62022 · doi:10.1007/s11222-011-9288-2
[40] Albert C, Künsch HR, Scheidegger A. (2015) A simulated annealing approach to approximate Bayesian computations. Stat. Comput. 25, 1217-1232. (doi:10.1007/s11222-014-9507-8) · Zbl 1331.65026 · doi:10.1007/s11222-014-9507-8
[41] Dutta R, Schoengens M, Onnela J, Mira A. (2017)ABCpy: a user-friendly, extensible, and parallel library for Approximate Bayesian Computation. In Proc. of the Platform for Advanced Scientific Computing Conference, Lugano, Switzerland, pp. 8:1-8:9. New York, NY: ACM (doi:10.1145/3093172.3093233) · doi:10.1145/3093172.3093233
[42] Fearnhead P, Prangle D. (2012) Constructing summary statistics for approximate Bayesian computation: semi-automatic approximate Bayesian computation. J. R. Stat. Soc. Series B Stat. Methodol. 74, 419-474. (doi:10.1111/j.1467-9868.2011.01010.x) · Zbl 1411.62057 · doi:10.1111/j.1467-9868.2011.01010.x
[43] Pudlo P, Marin JM, Estoup A, Cornuet JM, Gautier M, Robert CP. (2015) Reliable ABC model choice via random forests. Bioinformatics 32, 859-866. (doi:10.1093/bioinformatics/btv684) · doi:10.1093/bioinformatics/btv684
[44] Jiang B, Wu Ty, Zheng C, Wong WH. (2015)Learning summary statistic for approximate Bayesian computation via deep neural network. Stat. Sin.27, 1595-1618. (doi:10.5705/ss.202015.0340) · Zbl 1392.62073 · doi:10.5705/ss.202015.0340
[45] Gutmann MU, Dutta R, Kaski S, Corander J. (2018) Likelihood-free inference via classification. Stat. Comput. 28, 411-425. (doi:10.1007/s11222-017-9738-6) · Zbl 1384.62089 · doi:10.1007/s11222-017-9738-6
[46] Scott DW. (2015) Multivariate density estimation: theory, practice, and visualization. New York, NY: John Wiley & Sons. · Zbl 1311.62004
[47] Drovandi CC, Pettitt AN, Faddy MJ. (2011) Approximate Bayesian computation using indirect inference. J. R. Stat. Soc. Series C Appl. Stat. 60, 317-337. (doi:10.1111/j.1467-9876.2010.00747.x) · doi:10.1111/j.1467-9876.2010.00747.x
[48] Drovandi CC, Pettitt AN, Lee A. (2015) Bayesian indirect inference using a parametric auxiliary model. Stat. Sci. 30, 72-95. (doi:10.1214/14-STS498) · Zbl 1332.62088 · doi:10.1214/14-STS498
[49] Luo W, Tay WP. (2012)Identifying infection sources in large tree networks. In 2012 9th Annual IEEE Communications Society Conf. on Sensor, Mesh and Ad Hoc Communications and Networks (SECON), Seoul, Korea, pp. 281-289. New York, NY: IEEE. (doi:10.5705/ss.202015.0340) · Zbl 1392.62073 · doi:10.5705/ss.202015.0340
[50] Dong W, Zhang W, Tan CW. (2013)Rooting out the rumor culprit from suspects. In 2013 IEEE Int. Symposium on Information Theory Proceedings (ISIT), Istanbul, Turkey, pp. 2671-2675. New York, NY: IEEE. (doi:10.1109/ISIT.2013.6620711) · doi:10.1109/ISIT.2013.6620711
[51] Sundareisan S, Vreeken J, Prakash BA. (2015)Hidden hazards: finding missing nodes in large graph epidemics. In Proc. of the 2015 SIAM Int. Conf. on Data Mining, Vancouver, Canada, pp. 415-423. Philadelphia, PA: SIAM.
[52] Zhu K, Ying L. (2016) Information source detection in the SIR model: a sample-path-based approach. IEEE/ACM Trans. Netw. (TON) 24, 408-421. (doi:10.1109/TNET.2014.2364972) · doi:10.1109/TNET.2014.2364972
[53] Zhu K, Ying L. (2014) A robust information source estimator with sparse observations. Comput. Social Netw. 1, 3. (doi:10.1186/s40649-014-0003-2) · doi:10.1186/s40649-014-0003-2
[54] Holland PW, Leinhardt S. (1973) The structural implications of measurement error in sociometry. J. Math. Sociol. 3, 85-111. (doi:10.1080/0022250X.1973.9989825) · Zbl 0285.92027 · doi:10.1080/0022250X.1973.9989825
[55] Harling G, Onnela JP. (2016)Impact of degree truncation on the spread of a contagious process on networks. (http://arxiv.org/abs/1602.03434)
[56] Pinto PC, Thiran P, Vetterli M. (2012) Locating the source of diffusion in large-scale networks. Phys. Rev. Lett. 109, 068702. (doi:10.1103/PhysRevLett.109.068702) · doi:10.1103/PhysRevLett.109.068702
[57] Farajtabar M, Rodriguez MG, Zamani M, Du N, Zha H, Song L. (2015)Back to the past: source identification in diffusion networks from partially observed cascades. In Proc. of the 18th Int. Conf. on Artificial Intelligence and Statistics, San Diego, CA, pp. 232-240. PMLR 38. (http://proceedings.mlr.press/v38/farajtabar15.html)
[58] Spinelli B, Celis LE, Thiran P. (2017)Back to the source: an online approach for sensor placement and source localization. In Proc. of the 26th Int. Conf. on World Wide Web, Perth, Australia, pp. 1151-1160. Geneva, Switzerland: International World Wide Web Conferences Steering Committee. (doi:10.1145/3038912.3052584) · doi:10.1145/3038912.3052584
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.