×

A computational model of cerebral cortex folding. (English) Zbl 1406.92088

Summary: The geometric complexity and variability of the human cerebral cortex have long intrigued the scientific community. As a result, quantitative description of cortical folding patterns and the understanding of underlying folding mechanisms have emerged as important research goals. This paper presents a computational 3D geometric model of cerebral cortex folding initialized by MRI data of a human fetal brain and deformed under the governance of a partial differential equation modeling cortical growth. By applying different simulation parameters, our model is able to generate folding convolutions and shape dynamics of the cerebral cortex. The simulations of this 3D geometric model provide computational experimental support to the following hypotheses: (1) Mechanical constraints of the skull regulate the cortical folding process. (2) The cortical folding pattern is dependent on the global cell growth rate of the whole cortex. (3) The cortical folding pattern is dependent on relative rates of cell growth in different cortical areas. (4) The cortical folding pattern is dependent on the initial geometry of the cortex.

MSC:

92C20 Neural biology
92C15 Developmental biology, pattern formation
35Q92 PDEs in connection with biology, chemistry and other natural sciences
92C55 Biomedical imaging and signal processing

Software:

CARET

References:

[1] Angenent, S., Haker, S., Kikinis, R., Tannenbaum, A., 1999. Harmonic analysis and flattening the brain surface. In: Proceedings of MICCAI.; Angenent, S., Haker, S., Kikinis, R., Tannenbaum, A., 1999. Harmonic analysis and flattening the brain surface. In: Proceedings of MICCAI.
[2] Baraff, B., Witkin, A., 1988. Large steps in cloth simulation. In: SIGGRAPH, vol. 98, pp. 43-54.; Baraff, B., Witkin, A., 1988. Large steps in cloth simulation. In: SIGGRAPH, vol. 98, pp. 43-54.
[3] Barron, D., An experimental analysis of some factors involved in the development of the fissure pattern of the cerebral cortex, J. Exp. Zool., 113, 553-581 (1950)
[4] Batchelor, Ph. G.; Smith, A. D.C.; Hill, D. L.G.; Hawkes, D. J.; Cox, T. C.S., Measures of folding applied to the development of the human fetal brain, IEEE Trans. Med. Imag., 21, 8, 953-963 (2002)
[5] Beth Israel Deaconess Medical Center, 2007. 〈http://radnet.bidmc.harvard.edu/fetalatlas/atlas.html; Beth Israel Deaconess Medical Center, 2007. 〈http://radnet.bidmc.harvard.edu/fetalatlas/atlas.html
[6] Bowers, P.L., Hurdal, M.K., 2003. Planar conformal mappings of piecewise flat surfaces. In: Visualization and Mathematics III, Hege, H.-C., Polthier, K. (Eds.), Mathematics and Visualization, Springer, Berlin, pp. 3-34.; Bowers, P.L., Hurdal, M.K., 2003. Planar conformal mappings of piecewise flat surfaces. In: Visualization and Mathematics III, Hege, H.-C., Polthier, K. (Eds.), Mathematics and Visualization, Springer, Berlin, pp. 3-34. · Zbl 1069.30011
[7] Brown, M.; Keynes, R.; Lumsden, A., The Developing Brain (2002), Oxford University Press: Oxford University Press Oxford
[8] Cachia, A.; Mangin, J. F.; Riviere, D.; Papadopoulos-Orfanos, D.; Kherif, F.; Bloch, I.; Regis, J., A primal sketch of the cortex mean curvature: a morphogenesis based approach to study the variability of the folding patterns, IEEE Trans. Med. Imag., 22, 754-765 (2003)
[9] Cartwright, J., Labyrinthine turing pattern formation in the cerebral cortex, J. Theor. Biol., 217, 1, 97-103 (2002)
[10] Chenn, A.; Walsh, C., Regulation of cerebral cortical size by control of cell cycle exit in neural precursors, Science, 297, 365-369 (2002)
[11] Childs, A. M.; Ramenghi, L. A.; Cornette, L.; Tanner, S. F.; Arthur, R. J.; Martinez, D.; Levene, M. I., Cerebral maturation in premature infants: quantitative assessment using MR imaging, AJNR Am. J. Neuroradiol., 22, 8, 1577-1582 (2001)
[12] Clark, G. D., The classification of cortical dysplasias through molecular genetics, Brain Dev., 26, 6, 351-362 (2004)
[13] Connolly, C., External Morphology of the Primate Brain (1950), Springfield
[14] Courchesne, E.; Pierce, K.; Schumann, C. M.; Redcay, E.; Buckwalter, J. A.; Kennedy, D. P.; Morgan, J., Mapping early brain development in autism, Neuron, 56, 2, 399-413 (2007)
[15] Dehay, C.; Giroud, P.; Berland, M.; Killackey, H.; Kennedy, H., Contribution of thalamic input to the specification of cytoarchitectonic cortical fields in the primate: effects of bilateral enuclation in the fetal monkey on the boundaries, dimensions, and gyrification of striate and extrastriate cortex, J. Comp. Neurol., 367, 70-89 (1996)
[16] Dubois, J.; Benders, M.; Cachia, A.; Lazeyras, F.; Ha-Vinh Leuchter, R.; Sizonenko, S. V.; Borradori-Tolsa, C.; Mangin, J. F.; Hüppi, P. S., Mapping the early cortical folding process in the preterm newborn brain, Cereb. Cortex, 18, 6, 1444-1454 (2008)
[17] Fischl, B.; Sereno, M. I.; Dale, A. M., Cortical surface-based analysis II: inflation, flattening and a surface-based coordinate system, NeuroImage, 9, 195-207 (1999)
[18] Geng, G., Johnston, L., Yan, E., Walker, D., Egan, G., 2007. Modelling cerebral cortical folding. In: Proceedings of Workshop on Computational Biomechanisms, International Conference on Medical Image Computing and Computer Assisted Intervention, pp. 55-64.; Geng, G., Johnston, L., Yan, E., Walker, D., Egan, G., 2007. Modelling cerebral cortical folding. In: Proceedings of Workshop on Computational Biomechanisms, International Conference on Medical Image Computing and Computer Assisted Intervention, pp. 55-64.
[19] Geng, G., Johnston, L.A., Yan, E., Britto, J.M., Smith, D.W., Walker, D.W., Egan, G.F., 2009. Biomechanisms for modelling cerebral cortical folding. Med. Image Anal. 13 (6), 920-930.; Geng, G., Johnston, L.A., Yan, E., Britto, J.M., Smith, D.W., Walker, D.W., Egan, G.F., 2009. Biomechanisms for modelling cerebral cortical folding. Med. Image Anal. 13 (6), 920-930.
[20] Goldman, P.; Galkin, T., Prenatal removal of frontal association cortex in the fetal rhesus monkey: anatomical and functional consequences in postnatal life, Brain Res., 152, 451-485 (1978)
[21] Grinspun, E., Hirani, A.N., Desbrun, M., Schröder, P., 2003. Discrete shells. In: ACM SIGGRAPH/Eurographics symposium on Computer animation, pp. 62-67.; Grinspun, E., Hirani, A.N., Desbrun, M., Schröder, P., 2003. Discrete shells. In: ACM SIGGRAPH/Eurographics symposium on Computer animation, pp. 62-67.
[22] Grove, E. A.; Fukuchi-Shimogori, T., Generating the cerebral cortical area map, Annu. Rev. Neurosci., 26, 355-380 (2003)
[23] Gu, X.; Wang, Y.; Chan, T. F.; Thompson, P. M.; Yau, S. T., Genus zero surface conformal mapping and its application to brain surface mapping, IEEE Trans. Med. Imag., 23, 8, 949-958 (2004)
[24] Hardan, A. Y.; Jou, R. J.; Keshavan, M. S.; Varma, R.; Minshew, N. J., Increased frontal cortical folding in autism: a preliminary MRI study, Psychiatry Res., 131, 3, 263-268 (2004)
[25] Haydar, T.; Kuan, C.; Flavell, R.; Rakic, P., The role of cell death in regulating the size and shape of the mammalian forebrain, Cereb. Cortex, 9, 621-626 (1999)
[26] Hilgetag, C. C.; Barbas, H., Developmental mechanics of the primate cerebral cortex, Anat. Embryol., 210, 411-417 (2005)
[27] Hilgetag, C. C.; Barbas, H., Role of mechanical factors in the morphology of the primate cerebral cortex, PLoS Comput. Biol., 2, 3, e22 (2006)
[28] Kantarci, S.; Al-Gazali, L.; Hill, R. S.; Donnai, D.; Black, G. C.M.; Bieth, E.; Chassaing, N.; Lacombe, D.; Devriendt, K.; Teebi, A.; Loscertales, M.; Robson, C.; Liu, T.; MacLaughlin, D. T.; Noonan, K. M.; Russell, M. K.; Walsh, C. A.; Donahoe, P. K.; Pober, B. R., Mutations in megalin, a multi-ligand receptor, cause Donnai-Barrow syndrome characterized by corpus callosum, ocular, neurosensory, craniofacial, and diaphragmatic defects, Nat. Genet., 39, 957-959 (2007)
[29] Kingsbury, M.; Rehen, S.; Contos, J.; Higgins, C.; Chun, J., Nonproliferative effects of lysophosphatidic acid enhance cortical growth and folding, Nat. Neurosci., 6, 1292-1299 (2003)
[30] Lan, L. M.; Yamashita, Y.; Tang, Y.; Sugahara, T.; Takahashi, M.; Ohba, T.; Okamura, H., Normal fetal brain development: MR imaging with a half-fourier rapid acquisition with relaxation enhancement sequence, Radiology, 215, 205-210 (2000)
[31] Le Gros Clark, W., 1945. Deformation patterns on the cerebral cortex. In: Essays on Growth and Form, Oxford University Press, Oxford, pp. 1-23.; Le Gros Clark, W., 1945. Deformation patterns on the cerebral cortex. In: Essays on Growth and Form, Oxford University Press, Oxford, pp. 1-23.
[32] Levine, D.; Barnes, P. D., Cortical maturation in normal and abnormal fetuses as assessed with prenatal MR imaging, Radiology, 210, 751-758 (1999)
[33] Lewis, J., From signals to patterns: space, time, and mathematics in developmental biology, Science, 322, 5900, 399-403 (2008) · Zbl 1226.93102
[34] Li G., Liu T., Nie J., Guo L., Wong S.T.C., 2008. A novel method for cortical sulcal fundi extraction. In: International Conference on Medical Image Computing and Computer Assisted Intervention, vol. 11 (Pt 1), pp. 270-278.; Li G., Liu T., Nie J., Guo L., Wong S.T.C., 2008. A novel method for cortical sulcal fundi extraction. In: International Conference on Medical Image Computing and Computer Assisted Intervention, vol. 11 (Pt 1), pp. 270-278.
[35] Li, G., Guo, L., Nie, J., Liu, T., 2009a. Automatic cortical sulcal parcellation based on surface principal direction flow field tracking. NeuroImage 46 (4), 923-937.; Li, G., Guo, L., Nie, J., Liu, T., 2009a. Automatic cortical sulcal parcellation based on surface principal direction flow field tracking. NeuroImage 46 (4), 923-937.
[36] Li, K., Guo, L., Li, G., Nie, J., Faraco, C., Zhao, Q., Miller, S.L., Liu, T., 2009b. Gyral folding pattern analysis via surface profiling, Medical Image Computing and Computer Assisted Intervention (MICCAI).; Li, K., Guo, L., Li, G., Nie, J., Faraco, C., Zhao, Q., Miller, S.L., Liu, T., 2009b. Gyral folding pattern analysis via surface profiling, Medical Image Computing and Computer Assisted Intervention (MICCAI).
[37] Liu, T.; Shen, D.; Davatzikos, C., Deformable registration of cortical structures via hybrid volumetric and surface warping, NeuroImage, 22, 4, 1790-1801 (2004)
[38] Liu, T.; Nie, J.; Tarokh, A.; Guo, L.; Wong, S. T.C., Reconstruction of central cortical surface from MRI brain images: method and application, NeuroImage, 40, 3, 991-1002 (2008)
[39] Lohmann, G.; Von Cramon, D. Y., Automatic labelling of the human cortical surface using sulcal basins, Med. Image Anal., 4, 3, 179-188 (2000)
[40] Malamud, N.; Hirano, A., Atlas of Neuropathology (1974), University of California Press: University of California Press Berkeley, CA
[41] Mangin, J. F.; Riviére, D.; Cachia, A.; Duchesnay, E.; Cointepas, Y.; Papadopoulos-Orfanos, D.; Collins, D. L.; Evans, A. C.; Régis, J., Object-based morphometry of the cerebral cortex, IEEE Trans. Med. Imag., 24, 8, 968-982 (2004)
[42] Miller, M. I.; Josh, S. C.; Christensen, G. E., Large Deformation Fluid Diffeomorphisms for Landmark and Image Matching. Brain Warping (1999), Academic Press (Elsevier Science & Technology Books), pp. 115-132
[43] Mochida, G. H.; Walsh, C. A., Genetic basis of developmental malformations of the cerebral cortex, Arch. Neurol., 61, 5, 637-640 (2004)
[44] Mohamed, A.; Zacharaki, E.; Shen, D.; Davatzikos, C., Deformable registration of brain tumor images via a statistical model of tumor-induced deformation, Med. Image Anal., 10, 752-763 (2006)
[45] Monuki, E. S.; Walsh, C. A., Mechanisms of cerebral cortical patterning in mice and humans, Nat. Neurosci., 4, 1, 199-1206 (2001)
[46] Murray, J., Mathematical Biology (1993), Springer: Springer Heidelberg, Germany · Zbl 0779.92001
[47] Neal, J.; Takahashi, M.; Silva, M.; Tiao, G.; Walsh, C. A.; Sheen, V. L., Insights into the gyrification of developing ferret brain by magnetic resonance imaging, J. Anat., 210, 1, 66-77 (2007)
[48] Newmark, N. M., A method of computation for structural dynamics, ASCE J. Eng. Mech. Div., 85, EM 3, 67-94 (1959)
[49] Nie, J.; Liu, T.; Li, G.; Young, G.; Tarokh, A.; Guo, L.; Wong, S. T.C., Least-square conformal brain mapping with spring energy, Comput. Med. Imag. Graphics, 31, 8, 656-664 (2007)
[50] O’Leary, D. D., Do cortical areas emerge from a protocortex?, Trends Neurosci., 12, 400-406 (1989)
[51] O’Leary, D. D.; Nakagawa, Y., Patterning centers, regulatory genes and extrinsic mechanisms controlling arealization of the neocortex, Curr. Opinion Neurobiol., 12, 14-25 (2002)
[52] Ono, M.; Kubik, S.; Abernathy, C., Atlas of the Cerebral Sulci (1990), Thieme Medical Publishers: Thieme Medical Publishers New York
[53] Rademacher, J.; Morosan, P.; Schormann, T.; Schleicher, A.; Werner, C.; Freund, H.; Zilles, K., Probabilistic mapping and volume measurement of human primary auditory cortex, NeuroImage, 13, 669-683 (2001)
[54] Raghavan, R.; Lawton, W.; Ranjan, S. R.; Viswanathan, R. R., A continuum mechanics-based model for cortical growth, J. Theor. Biol., 187, 285-296 (1997)
[55] Rakic, P., Specification of cerebral cortical areas, Science, 241, 170-176 (1988)
[56] Rakic, P., A century of progress in corticoneurogenesis: from silver impregnation to genetic engineering, Cereb. Cortex, 16, i3-i17 (2006)
[57] Rettmann, M. E.; Han, X.; Xu, C.; Prince, J. L., Automated sulcal segmentation using watersheds on the cortical surface, NeuroImage, 15, 2, 329-344 (2002)
[58] Richman, D.; Stewart, R.; Hutchinson, J.; Caviness, V., Mechanical model of brain convolutional development, Science, 189, 18-21 (1975)
[59] Shi, Y.; Thompson, P. M.; Dinov, I.; Toga, A. W., Hamilton-Jacobi skeleton on cortical surfaces, IEEE Trans. Med. Imag., 27, 5, 664-673 (2008)
[60] Striegel, D. A.; Hurdal, M. K., Chemically based mathematical model for development of cerebral cortical folding patterns, PLoS Comput. Biol., 5, 9, e1000524 (2009)
[61] Sur, M.; Rubenstein, J. L., Patterning and plasticity of the cerebral cortex, Science, 310, 805-810 (2005)
[62] Talairach, J.; Tournoux, P., Co-planar Stereotaxic Atlas of the Human Brain (1988), Thieme: Thieme New York
[63] Terzopoulos, D.; Platt, J.; Barr, A.; Fleischer, K., Elastically deformable models, Comput. Graphics, 21, 205-214 (1987)
[64] Todd, P., A geometric model for the cortical folding pattern of simple folded brains, J. Theor. Biol., 97, 529-538 (1982)
[65] Toro, R.; Burnod, Y., A morphogenetic model of the development of cortical convolutions, Cereb. Cortex, 15, 1900-1913 (2005)
[66] Toro, R.; Perron, M.; Pike, B.; Richer, L.; Veillette, S.; Pausova, Z.; Paus, T., Brain size and folding of the human cerebral cortex, Cereb. Cortex, 18, 10, 2352-2357 (2008)
[67] Tu, Z.; Zheng, S.; Yuille, A. L.; Reiss, A. L.; Dutton, R. A.; Lee, A. D.; Galaburda, A. M.; Dinov, I.; Thompson, P. M.; Toga, A. W., Automated extraction of the cortical sulci based on a supervised learning approach, IEEE Trans. Med. Imag., 26, 4, 541-552 (2007)
[68] Vaccarino, F. M.; Fagel, D. M.; Ganat, Y.; Maragnoli, M. E.; Ment, L. R.; Ohkubo, Y.; Schwartz, M. L.; Silbereis, J.; Smith, K. M., Astroglial cells in development, regeneration, and repair, The Neuroscientist, 13, 173-185 (2007)
[69] Van Essen, D. C.; Maunsell, J. H.R., Two-dimensional maps of the cerebral cortex, J. Comput. Neurol., 191, 255-281 (1980)
[70] Van Essen, D. C., A tension-based theory of morphogenesis and compact wiring in the central nervous system, Nature, 385, 313-318 (1997)
[71] Van Essen, D. C.; Drury, H. A.; Joshi, S.; Miller, M. I., Functional and structural mapping of human cerebral cortex: solutions are in the surfaces, Proc. Nat. Acad. Sci., 95, 3, 788-795 (1998)
[72] Venita, J., Pathology in an infant with Down’s syndrome and tuberous sclerosis, Pediatr. Neurol., 15, 57-59 (1996)
[73] Walsh, C.; Cepko, C. L., Clonally related cortical cells show several migration patterns, Science, 241, 1342-1345 (1988)
[74] Walsh, C.; Cepko, C. L., Widespread dispersion of neuronal clones across functional regions of the cerebral cortex, Science, 255, 434-440 (1992)
[75] Welker, W., Why does cerebral cortex fissure and fold? A review of determinants of gyri and sulci, Cereb. Cortex, 8, 3-136 (1990)
[76] Xu, C.; Pham, D. L.; Pettmann, M. E.; Yu, D. N.; Prince, J. L., Reconstruction of the human cerebral cortex from magnetic resonance images, IEEE Trans. Med. Imag., 18, 6, 467-480 (1999)
[77] Yang, F.; Kruggel, F., Automatic segmentation of human brain sulci, Med. Image Anal., 12, 4, 442-451 (2008)
[78] Yeo B.T.T., Sabuncu M., Vercauteren T., Ayache N., Fischl B., Golland P., 2008a. Spherical demons: fast surface registration. In: International Conference on Medical Image Computing and Computer Assisted Intervention, vol. 11 (Pt 1), pp. 745-753.; Yeo B.T.T., Sabuncu M., Vercauteren T., Ayache N., Fischl B., Golland P., 2008a. Spherical demons: fast surface registration. In: International Conference on Medical Image Computing and Computer Assisted Intervention, vol. 11 (Pt 1), pp. 745-753.
[79] Yeo B.T.T., Yu P., Grant P.E., Fischl B., Golland P., 2008b. Shape analysis with overcomplete spherical wavelets. In: International Conference on Medical Image Computing and Computer Assisted Intervention, vol. 11 (Pt 1), pp. 468-476.; Yeo B.T.T., Yu P., Grant P.E., Fischl B., Golland P., 2008b. Shape analysis with overcomplete spherical wavelets. In: International Conference on Medical Image Computing and Computer Assisted Intervention, vol. 11 (Pt 1), pp. 468-476.
[80] Yu, P., Yeo, B.T.T., Grant, P.E., Fischl, B., Golland, P., 2007a. Cortical folding development study based on over-complete spherical wavelets. In: International Conference on Computer Vision ICCV, pp. 1-8.; Yu, P., Yeo, B.T.T., Grant, P.E., Fischl, B., Golland, P., 2007a. Cortical folding development study based on over-complete spherical wavelets. In: International Conference on Computer Vision ICCV, pp. 1-8.
[81] Yu, P.; Han, X.; Segonne, F.; Pienaar, R.; Buckner, R. L.; Golland, P.; Grant, P. E.; Fischl, B., Cortical surface shape analysis based on spherical wavelets, IEEE Trans. Med. Imag., 26, 4, 582-597 (2007)
[82] Yushkevich, P. A.; Piven, J.; Hazlett, H. C.; Smith, R. G.; Ho, S.; Gee, J. C.; Gerig, G., User-guided 3D active contour segmentation of anatomical structures: significantly improved efficiency and reliability, NeuroImage, 31, 1116-1128 (2006)
[83] Zilles, K.; Armstrong, E.; Schleicher, A.; Kretschmann, H. J., The human pattern of gyrification in the cerebral cortex, Anat. Embryol. (Berlin), 179, 2, 173-179 (1988)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.