×

Greedy-based approximation of frequency-weighted Gramian matrices for model reduction in multibody dynamics. (English) Zbl 1331.70003

Summary: The method of elastic multibody systems is frequently used to describe the dynamical behavior of the mechanical subsystems in multi-physics simulations. One important issue for the simulation of elastic multibody systems is the error-controlled reduction of the flexible body’s degrees of freedom. By the use of second order frequency-weighted Gramian matrix based reduction techniques the distribution of the loads is taken into account a-priori and very accurate models can be obtained within a predefined frequency range and even a-priori error bounds are available. However, the calculation of the frequency-weighted Gramian matrices requires high computational effort. Hence, appropriate approximation schemes have to be used to find the dominant eigenspace of these matrices.
In the current contribution, the matrix integral needed for calculating the Gramian matrices is approximated by quadratures using integral kernel snapshots. The number and location of these snapshots have a strong influence on the reduction results. Sophisticated snapshot selection methods based on greedy algorithms from the reduced basis methods are used to construct the optimal location of snapshot frequencies. The method can be viewed as an automatic determination of optimal frequency weighting and as an adaptive learning of quadrature rules. One ingredient of greedy algorithms is the need of error measures. To gain computational advantage two different error estimators are derived and used in the Greedy algorithm instead of the absolute or relative error.

MSC:

70-08 Computational methods for problems pertaining to mechanics of particles and systems
70E55 Dynamics of multibody systems
93B11 System structure simplification
70Q05 Control of mechanical systems
74H15 Numerical approximation of solutions of dynamical problems in solid mechanics

Software:

MatMorembs; rbMIT; PMTBR
Full Text: DOI

References:

[1] A.Antoulas, Approximation of Large‐Scale Dynamical Systems, (SIAM, Philadelphia, 2005). · Zbl 1112.93002
[2] T.Bechtold, E.B.Rudnyi, and J.G.Korvink, Error indicators for fully automatic extraction of heat‐transfer macromodels for MEMS, J. Micromech. Microeng.15(3), 430-440 (2005).
[3] P.Benner, P.Kürschner, and J.Saak, Efficient Handling of Complex Shift Parameters in the Low‐rank Cholesky Factor ADI Method, Tech. Rep. (Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, 2011).
[4] P.Benner and J.Saak, Efficient balancing based MOR for large scale second order systems, Math. Comput. Model. Dyn. Syst.17(2), 123-143 (2011). · Zbl 1221.93039
[5] J.Fehr, Automated and error‐controlled model reduction in elastic multibody systems, Doctoral Theses, Schriften aus dem Institut für Technische und Numerische Mechanik der Universität Stuttgart, Band 21 (Shaker Verlag, Aachen, 2011).
[6] J.Fehr and P.Eberhard, Error‐controlled model reduction in flexible multibody dynamics, J. Comput. Nonlinear Dyn.5(3), 031005‐1-031005‐8 (2010).
[7] J.Fehr, M.Fischer, B.Haasdonk, and P.Eberhard, Snapshot‐Based Approximation of Frequency‐Weighted Gramian Matrices for Model Reduction in Multibody Dynamics, in: Proceedings Model Reduction of Parametrized Systems (MoRePaS 09, Münster, 2009).
[8] M.Fischer, Einfluss der Snapshot‐Wahl bei der POD basierten Reduktion (in German), Student Thesis STUD‐311 (Institute of Engineering and Computational Mechanics, University of Stuttgart, 2009).
[9] K.Glover, All optimal Hankel‐norm approximations of linear multivariable systems and their L^∞‐error bounds, Int. J. Control39(6), 1115-1193 (1984). · Zbl 0543.93036
[10] W.Gressick, J.Wen, and J.Fish, Order reduction for large scale finite element models: A system perspective, Int. J. Multiscale Comput. Eng.3, 337-362 (2005).
[11] S.Gugercin, A.C.Antoulas, and C.A.Beattie, ℋ︁_2 Model reduction for large‐scale linear dynamical systems, SIAM J. Matrix Analysis and Applications30(2), 609-638 (2008). · Zbl 1159.93318
[12] B.Haasdonk and M.Ohlberger, Adaptive Basis enrichment for the Reduced Basis Method Applied to Finite Volume Schemes, in: Proc. 5th International Symposium on Finite Volumes for Complex Applications, June 8-13 (Aussois, France, 2008), pp. 471-478. · Zbl 1422.65207
[13] B.Haasdonk, M.Dihlmann, and M.Ohlberger, A training set and multiple bases generation approach for parametrized model reduction based on adaptive grids in parameter space, Math. Comput. Model. Dyn. Syst.17(4), 423-442 (2011). · Zbl 1302.65221
[14] B.Haasdonk and M.Ohlberger, Efficient reduced models and a‐posteriori error estimation for parametrized dynamical systems by offline/online decomposition, Math. Comput. Model. Dyn. Syst.17(2), 145-161 (2011). · Zbl 1230.37110
[15] S.Huber, Modellreduktion elastischer Körper mit Hilfe der Proper Orthogonal Decomposition (in German), Student Thesis STUD‐253 (Institute of Engineering and Computational Mechanics, University of Stuttgart, 2006).
[16] G.Kerschen, J.C.Golinval, A.F.Vakakis, and L.A.Bergman, The method of proper orthogonal decomposition for dynamical characterization and order reduction of mechanical systems: An overview, Nonlinear Dyn.41, 147-169 (2005). · Zbl 1103.70011
[17] Y.Konkel, O.Farle, and R.Dyczij‐Edlinger, Ein Fehlerschätzer für die Krylov‐Unterraum basierte Ordnungsreduktion zeit‐harmonischer Anregungsprobleme (in German), in: Tagungsband GMA‐Fachausschuss 1.30 “Modellbildung, Identifikation und Simulation in der Automatisierungstechnik”, edited by B. Lohmann and A. Kugi (Automation and Control Institute (ACIN), Vienna University of Technology, 2008).
[18] P.Lancaster and I.Zaballa, Diagonalizable quadratic eigenvalue problems, Mech. Syst. Signal Proc.23(4), 1134-1144 (2009).
[19] M.Lehner, Modellreduktion in elastischen Mehrkörpersystemen (in German), Dissertation, Schriften aus dem Institut für Technische und Numerische Mechanik der Universität Stuttgart, Band 10 (Shaker Verlag, Aachen, 2011).
[20] J.Lu, A.Ast, and P.Eberhard, Modeling and Active Vibration Control of Flexible Structures Using Multibody System Theory, in: Proceedings of ICMEM, (ICMEM, Wuxi, China, 2007).
[21] B.C.Moore, Principal component analysis in linear systems: Controllability, observability, and model reduction, IEEE Trans. Autom. Control26(1), 17-32 (1981). · Zbl 0464.93022
[22] P.Müller and W.Schiehlen, Linear Vibrations, (Martinus Nijhoff Publ., Dordrecht, 1985). · Zbl 0584.70002
[23] A.T.Patera and G.Rozza, Reduced Basis Approximation and a Posteriori Error Estimation for Parametrized Partial Differential Equations, MIT Pappalardo Graduate Monographs in Mechanical Engineering (MIT, Massachusetts, 2007).
[24] T.Penzl, Algorithms for model reduction of large dynamical systems, Linear Algebr. Appl.415(2-3), 322-343 (2006). · Zbl 1092.65053
[25] R.Phillips and L.Silveira, Poor Man’s TBR: A simple model reduction scheme, IEEE Trans. Comput.‐Aided Des. Integr. Circuits Syst.24, 43-55 (2005).
[26] T.Reis and T.Stykel, Balanced truncation model reduction of second‐order systems, Math. Comput. Model. Dyn. Syst.14(5), 391-406 (2008). · Zbl 1151.93010
[27] H.R.Schwarz and N.Köckler, Numerische Mathematik (in German) (Teubner, Stuttgart, 2004). · Zbl 1060.65004
[28] R.Schwertassek and O.Wallrapp, Dynamik flexibler Mehrkörpersysteme (in German) (Vieweg, Braunschweig, 1999).
[29] G.Shi and C.J.Shi, Model‐order reduction by dominant subspace projection: Error bound, subspace computation and circuit applications, IEEE Trans. Circuits Syst. I52(5), 975-993 (2005). · Zbl 1374.94925
[30] B.Simeon, Numerical analysis of flexible multibody systems, Multibody Syst. Dyn.6(4), 305-325 (2001). · Zbl 1060.70015
[31] Simpack, Reference Guide, Simpack Version 8.901b (Simpack AG, Gilching, 2009).
[32] L.Sirovich, Turbulence and the dynamics of coherent structures. part i-iii, Q. Appl. Math.45, 561-590 (1987). · Zbl 0676.76047
[33] D.C.Sorensen and A.C.Antoulas, Gramians of Structured Systems and Error Bound for Structure‐Preserving Model Reduction, Tech. Rep. (Rice University, Houston, 2004).
[34] T.Stykel, Gramian‐based model reduction for descriptor systems, Math. Control Signals Syst.16, 297-319 (2004). · Zbl 1067.93011
[35] K.Veroy, C.Prud’homme, D.Rovas, and A.Patera, A posteriori error bounds for reduced‐basis approximation of parametrized noncoercive and nonlinear elliptic partial differential equations, in: AIAA Paper 2003‐3847, Proc. of the 16th AIAA Computational Fluid Dynamics Conference (AIAA, Reston, 2003).
[36] S.Volkwein, Model reduction using proper orthogonal decomposition, http://www.uni‐graz.at/imawww/volkwein/POD.pdf, 2006, Accessed 8 November 2007.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.