×

MIXKIP/RAPCAL: a computational package for integrated simulations of large-scale atomic kinetics and radiation transport in non-local thermodynamic equilibrium plasmas. (English) Zbl 1480.76165

Summary: In many of the plasmas generated in many fields of the high energy density physics, the radiation can significantly alter the material response. A proper microscopic description of these plasmas entails integrated computer codes that self-consistently combines large-scale atomic kinetics and radiation transport. Due to the inherent complexity of this type of codes and its interest in the area of high energy density physics, new developments in this field are welcomed. In this work, we present MIXKIP/RAPCAL, an integrated computational package to perform 1D and 2D large-scale non-local thermodynamic equilibrium atomic kinetics and radiation transfer coupled simulations for high energy density plasmas. This package includes different modules that allow simulations of non-equilibrium plasmas under different degrees of detail and accuracy, depending on the requirements of the situations to analyze. Comparisons with experimental results of homogeneous optically thick plasmas of gold and xenon are presented in order to check its accuracy. The influence of different approaches of the spatial discretization of the plasma in the radiation dependent atomic kinetics simulations is also analyzed. Finally, this study is also made for a non-homogeneous optically thick aluminum plasma.

MSC:

76X05 Ionized gas flow in electromagnetic fields; plasmic flow
76M99 Basic methods in fluid mechanics
78A40 Waves and radiation in optics and electromagnetic theory
78A35 Motion of charged particles
Full Text: DOI

References:

[1] V.I. Fisher, D.V. Fisher and Y. Maron, Radiation transport and density effects in non-equilibrium plasmas, High Energy Density Phys., 3 (2007), 283-286.
[2] D.R. Bates, A.E. Kingston and R.W.P. McWhirter, Recombination between electrons and atomic ions, I. Optically thin plasmas, Proc. R. Soc. A, 267 (1962), 297-312.
[3] D.A. Holladay, C.J. Fontes, W.P. Even and R.G. McClarren, An accelerated aproach to inline non-LTE modeling, High Energy Density Phys., 34 (2020), 100746.
[4] S. Hansen, C. Fontes, J. Colgan, J. Abdallah Jr., H. Chung, H. Scott, V. Novikov, O. Peyrusse, G. Ferland, R. Williams and Y. Ralchenko, Modern methods in collisional-radiative model-ing of plasmas, Springer, 2016.
[5] H.A. Scott and S.B. Hansen, Advances in NLTE modeling for integrated simulations, High Energy Density Phys., 6 (2010), 39-47.
[6] J. Bauche, C. Bauche-Arnoult and M. Klapisch, Transition Arrays in the Spectra of Ionized Atoms, Adv. At. Mol. Phys. 23 (1988), 131-195.
[7] A. Bar-Shalom, J. Oreg, W.H. Goldstein, D. Shvarts and A. Zigler, Super-transition-arrays: A model for the spectral analysis of hot, dense plasma, Phys. Rev. A 40 (1989), 3183.
[8] S. Mazevet and J.J. Abdallah Jr., Mixed UTA and detailed line treatment for mid-Z opacity and spectral calculations, J. Phys. B 39 (2006),3419.
[9] S. Hansen, J. Bauche, C. Bauche-Arnoult and M.F. Gu, Hybrid atomic models for spectro-scopic diagnostics, High Energy Density Phys., 3 (2007), 109-114.
[10] A. Bar-Shalom, M. Klapisch and J. Oreg, HULLAC, an integrated computer package for atomic processes in plasmas, J. Quant. Spectrosc. Radiat. Transf., 71 (2001), 169-188.
[11] H.A. Scott, CRETIN, a radiative transfer capability for laboratory plasmas, J. Quant. Spec-trosc. Radiat. Transf., 71 (2001), 689-701.
[12] O. Peyrusse, On the superconfiguration approach to model NLTE plasma emission, J. Quant. Spectrosc. Radiat. Transf., 71 (2001), 571-579.
[13] H. Chung, M. Chen, W. Morgan, Yu. Ralchenko and R. Lee, FLYCHK: generalized popu-lation kinetics and spectral model for rapid spectrsocopic analysis for all elements, High Energy Density Phys., 1 (2005), 3-12.
[14] P. Hakel, M. Sherrill, S. Mazevet, J.J. Abdallah Jr., J. Colgan, D. Kilcrease, N. Magee, C. Fontes and H. Zhang, The new Los Alamos opacity code ATOMIC, J. Quant. Spectrosc. Radiat. Transf., 99 (2006), 265-271.
[15] R. Rodriguez, R. Florido, J.M. Gil, J.G. Rubiano, D. Suarez, P. Martel, E. Minguez, R.C. Mancini, Collisional-Radiative calculations of optically thin and thick plasmas using the computational package ABAKO/RAPCAL. Commun. Comput. Phys., 8 (2010), 185-210. · Zbl 1364.82005
[16] E.G. Hill and S.J. Rose, Modelling of silicon in inertial confinement fusion confinements, High Energy Density Phys., 8 (2011), 307-312.
[17] Y. Frank, E. Louzon, P. Mandelbaum and Z. Henis, SEMILLAC: a new hybrid atomic model of hot dense plasmas, High Energy Density Phys., 9 (2013), 594-600.
[18] G. Espinosa, R. Rodriguez, J.M. Gil, F. Suzuki-Vidal, C. Stehle, J.G. Rubiano and P. Martel, Influence of atomic kinetics in the simulation of plasma microscopic properties and thermal instabilities for radiative bow shock experiments, Phys. Rev. E, 1 (2017), 3-12.
[19] R.W. Lee, J.K. Nash, Y. Ralchenko, Review of the NLTE kinetics code workshop, J. Quant. Spectrosc. Radiat. Transfer, 58 (1997), 737-742.
[20] C. Bowen, A. Decoster, C.J. Fontes, K.B. Fournier, O. Peyrusse, Y.V. Ralchenko, Review of the NLTE emissivities code comparison virtual workshop, J. Quant. Spectrosc. Radiat. Transfer, 81 (2003), 71-84.
[21] C. Bowen, R.W. Lee and Yu. Ralchenko, Comparing plasma population kinetics codes: re-view of the NLTE-3 kinetics workshop, J. Quant. Spectrosc. Radiat. Transf., 99 (2006), 102-119.
[22] J.G. Rubiano, R. Florido, C. Bowen, R.W. Lee and Yu. Ralchenko, Review of the 4th NLTE code comparision workshop, High Energy Density Phys., 3 (2007), 225-232.
[23] C.J. Fontes, J. Abdallah Jr., C. Bowen, R.W. Lee and Yu. Ralchenko, Review of the NLTE-5 kinetics workshop, High Energy Density Phys., 5 (2009), 15-22.
[24] H.-K. Chung, C. Bowen, C.J. Fontes, S.B. Hansen, Y. Ralchenko, Comparison and analysis of collisional-radiative models at the NLTE-7 workshop, High Energy Density Phys., 9 (2013), 645-652.
[25] R. Piron, F. Gilleron, Y. Aglitskiy, H.-H. Chung, C.J. Fontes, S.B. Hansen, O. Marchuk, H.A. Scott, E. Stambulik, Yu. Ralchenko, Review of the 9th NLTE code comparison workshop, High Energy Density Phys., 23 (2017), 38-47.
[26] S.B. Hansen, H.K. Chung, C.J. Fontes, Yu Ralchenko, H.A. Scott, E. Stambulchik, Review of the 10th Non-LTE code comparison workshop, High Energy Density Phys., 35 (2020), 100693.
[27] J.P. Apruzese and JL. Giuliani, Multi-dimensional radiation transport for modeling axis-symmetric Z pinches: ray tracing compared to Monte Carlo solutions for a two-level atom, J. Quant. Spectrosc. Radiat. Transfer, 111 (2010), 134-143.
[28] J.P. Apruzese, J. Davis, K.G. Whitney, J.W. Thornhill, P.C. Kepple, R.W. Clark, C. Deeney, C.A. Coverdale, T.W.L. Sanford, The physics of radiation transport in dense plasmas, Phys. Plasmas, 9 (2002), 2411-2419.
[29] C.C. Smith, Solutions of the radiation diffusion equation, High Energy Density Phys., 6 (2010), 48-56.
[30] R.C. Mancini, R.F. Joyce and C.F. Hooper, Jr., Escape factors for Stark-broadened line profiles J. Phys. B, 20 (1987), 2975-2985.
[31] J.J. MacFarlane, P. Wang and G.A. Moses, Non-LTE Radiation Transport in Moderate Density Plasmas, Laser Part. Beams, 8 (1990), 729-740.
[32] R.W. Clark, J. Davis, J.P. Apruzese and J.L. Giuliani Jr., A probabilistic model for continuum transport in dense, optically thick plasmas, J. Quant. Spectrosc.Radiat. Transf., 53 (1995) 307-320.
[33] J.P. Apruzese, J.L. Giuliani and S.B. Hansen, Benchmarking multilevel, 2-D cylindrical radi-ation transport in a high energy density plasma environment, High Energy Density Phys., 8 (2012), 231-237.
[34] G.C. Pomraning, The equations of radiation hydrodynamics, Pergamon Press, New York, 1973.
[35] M. Frank, J. Kusch, T. Camminady and C.D. Hauck, Ray effect mitigation for the discrete ordinates method using artificial scattering, Nucl. Sci. Eng., 194 (2020), 971-988.
[36] K.D. Lathrop, Ray effects in discrete ordinates equations, Nucl. Sci. Eng., 32 (1968), 357-369.
[37] K.D. Lathrop, Remedies for ray effects, Nucl. Sci. Eng., 45 (1971), 255268.
[38] I. Abu-Shumays, Angular quadratures for improved transport computations, Transport Theor. Stat., 30 (2001), 169204. · Zbl 1106.82375
[39] J. Morel, T. Wareing, R. Lowrie and D. Parsons, Analysis of ray-effect mitigation techniques, Nucl. Sci. Eng., 144 (2003), 122.
[40] J. Tencer, Ray effect mitigation through reference frame rotation, J. Heat Transfer, 138 (2016) 112701.
[41] T. Camminady, M. Frank, K. Kupper and J. Kusch, Ray effect mitigation for the discrete ordinates method through quadrature rotation, J. Comput. Phys., 382 (2019), 105123. · Zbl 1451.65116
[42] H.P. Jones and A. Skumanich, The Formation of Resonance Lines in Multidimensional Me-dia. II. Radiation Operators and Their Numerical Representation, Astrophys. J., 185 (1973), 167-182.
[43] H.P. Jones, The Formation of Resonance Lines in Multidimensional Media. III. Interpolation Functions, Accuracy, and Stability, Astrophys. J., 185 (1973) 183-196.
[44] D. Mihalas, L.H. Auer and B.W. Mihalas, Two-dimensional radiative transfer I. Planar ge-ometry, Astrophys. J. 220 (1978), 1001-1023.
[45] G.L. Olson and P.B. Kunasz, Short characteristic solution of the non-LTE line transfer prob-lem by operator perturbationI. The one-dimensional planar slab, J. Quant. Spectrosc. Radiat. Transfer, 38 (1987), 325-336.
[46] P. Kunasz, and L.H. Auer, Short characteristic integration of radiative transfer problems: formal solution in two-dimensional slabs, J. Quant. Spec. Radiat. Transf., 39 (1988), 67-79.
[47] M.Van Noort, I. Hubeny and T. Lanz, Multidimensional non-LTE radiative transfer. I. A uni-versal two-dimensional short-characteristics scheme for cartesian, spherical and cylindrical coordinate systems, Astrophys. J., 568 (2002), 1066-1094.
[48] S.W. Davis, J.M. Stone and Y.F. Jiang, A radiation transfer solver for ATHENA using short characteristics, Astrophys. J., Suppl. Ser., 199 (2012), 9.
[49] L. Hennicker, J. Puls, N.D. Kee and J.O. Sundqvist, A 3D short-characteristics method for continuum and line scattering problems in the winds of hot stars, Astron. Astrophys., 633 (2020), A16.
[50] A. Norlund and K. Galsgaard, A 3D MHD code for parallel computers, Tech. Rep., Astro-nomical Observatory, Copenhagen University.
[51] P.F. Bendicho, J. Trujillo Bueno and L. Auer, Multidimensional radiative transfer with multi-level atoms: II. The non-linear multigrid method, Astron. Astrophys., 324 (1997), 161-176.
[52] B. Freytag, M. Steffen and B. Dorch, Spots on the surface of Betelgeuse -Results from new 3D stellar convection models, Astron. Nachr., 323 (2002), 213-219.
[53] A. vogler, S. Shelyag, M. Schussler, F. Cattaneo, T. Emonet and T. Linde, Simulations of magneto-convection in the solar photosphere, Astron. Astrophys., 429 (2005) 335-351.
[54] T. Heinemann, W. Dobler, A. Nordlund, and A. Brandenburg, Astron. Astrophys., Radiative transfer in decomposed domains, 448 (2006), 731-737. · Zbl 1104.85008
[55] P.H. Hauschildt and E. Baron, A 3D radiative transfer framework. I. Nonlocal operator split-ting and continuum scattering problems, Astron. Astrophys., 451 (2006), 273-284.
[56] M. Gonzalez, E. Audit and P. Huynh, HERACLES: a three-dimensional radiation hydrody-namics code, Astron. Astrophys., 464 (2007), 429-435.
[57] J. Leenaarts, M. Carlsson, M. Hansteen and L. Rouppe van der Voort, Astrophys. J., Three-dimensional Non-LTE radiative transfer computation of the Ca 8542 infraredline from a radiation-MHD simulation, 694 (2009), L128-L131.
[58] W. Hayek, M. Asplund, M. Carlsson, R. Trampedach, R. Collet, B.V. Gudiksen, V.H. Hansteen and J. Leenaarts, Radiative transfer with scattering for domain-decomposed 3D MHD simulations of cool stellar atmospheres. Numerical methods and application to the quiet, non-magnetic, surface of a solar-type star, Astron. Astrophys., 517 (2010), A49.
[59] L. Ibgui, I. Hubeny, T. Lanz and C. Stehle, IRIS: a generic three-dimensional radiative trans-fer code, Astron. Astrophys., 549 (2013), A126.
[60] J.J. MacFarlane, I.E. Golovkin, P. Wang, P.R. Woodruff and N.A. Pereyra, SPECT3D-A multi-dimensional collisional-radiative code for generating diagnostic signatures based on hydro-dynamics and PIC simulation output, High Energy Density Phys., 3 (2007), 181-190.
[61] R. Florido, R. Rodriguez, J.M. Gil, J.G. Rubiano, P. Martel, E. Minguez, R.C. Mancini, Mod-eling of population kinetics of plasmas that are not in local-thermodynamic equilibrium, using a versatile collisional-radiative model based on analytical rates, Phys. Rev. E 80 (2009) 056402.
[62] R. Rodriguez, G. Espinosa, J.M. Gil, J.G. Rubiano, M.A. Mendoza, P. Martel, E. Minguez, D.R. Symes, M. Hohenberger, R.A. Smith, Time-dependent and radiation field effects on collisional-radiative simulations of radiative properties of blast waves launched in clusters of xenon, High Energy Density Phys., 17 (2015), 119-128.
[63] G. Espinosa, J.M. Gil, R. Rodriguez, J.G. Rubiano, M.A. Mendoza, P. Martel, E. Minguez, F. Suzuki-Vidal, S.V. Lebedev, G.F. Swadling, G. Burdiak, L.A. Pickworth, J. Skidmore, Col-lisionalradiative simulations of a supersonic and radiatively cooled aluminum plasma jet, High Energy Density Phys., 17 (2015), 74-84.
[64] R. Rodriguez, G. Espinosa, J. M. Gil and P. R. Beltran, Generation and parametrization of mean plasma radiative properties databases for astrophysics and nuclear fusion applica-tions, Int. J. Comput. Methods, 17 (2020), 1940003. · Zbl 07205445
[65] E. Minguez, R. Florido, R. Rodriguez, J.M. Gil, J.G. Rubiano, M.A. Mendoza, D. Suarez and P. Martel, Opacity calculation for target physics using the ABAKO/RAPCAL code, High Energy Density Phys., 6 (2010), 57-65.
[66] J.M. Gil, R. Rodriguez, P. Martel, R. Florido, J.G. Rubiano, M.A. Mendoza and E. Minguez, Analysis of the influence of the plasma thermodynamic regime in the spectrally resolved and mean radiative opacity calculations of carbon plasmas in a wide range of density and temperature, J. Quant. Spectrosc. Radiat. Transf., 114 (2013), 136-150.
[67] J.M. Gil, R. Rodriguez, R. Florido, J.G. Rubiano, M.A. Mendoza, A. de la Nuez, G. Espinosa, P. Martel and E. Minguez, Parametrization of the average ionization and radiative cooling rates of carbon plasmas in a wide range of density and temperature, J. Quant. Spectrosc. Radiat. Transf., 125 (2013), 123-138.
[68] R. Rodriguez, J.M. Gil, G. Espinosa, R. Florido, J.G. Rubiano, M.A. Mendoza, P. Martel, E. Minguez, D.R. Symes, M. Hohenberger and R.A. Smith, Determination of the average ionization and thermodynamic regimes of xenon plasmas with an application to the charac-terization of blast waves launched in xenon clusters, High Energy Density Phys., 7 (2011), 71-76.
[69] R. Rodriguez, J.M. Gil, G. Espinosa, R. Florido, J.G. Rubiano, M.A. Mendoza, P. Martel, E. Minguez, D.R. Symes, M. Hohenberger and R.A. Smith, Determination and analysis of plasma parameters for simulations of radiative blast waves launched in clusters of xenon and krypton, Plasma Phys. Control. Fusion, 54 (2012), 045012.
[70] R. Rodriguez, G. Espinosa, J.M. Gil, R. Florido, J.G. Rubiano, M.A. Mendoza, P. Martel, E. Minguez, D.R. Symes, M. Hohenberger and R.A. Smith, Analysis of microscopic magnitudes of radiative blast waves launched in xenon clusters with collisional-radiative steady-sate simulations, J. Quant. Spectrosc. Radiat. Transf., 125 (2013), 69-83.
[71] R. Rodriguez, G. Espinosa, J.M. Gil, Radiative properties for astrophysical plasma mixtures in nonlocal thermodynamic equilibrium, Phys. Rev. E, 98 (2018), 033213.
[72] R. Rodriguez, G. Espinosa, J. M. Gil and P. R. Beltran, Monochromatic and mean radia-tive properties of astrophysical plasma mixtures in nonlocal thermodynamic equilibrium regime, X Ray Spectr., 49 (2020), 6-10.
[73] G. Espinosa, R. Rodriguez and J.M. Gil, Analysis of radiative opacities for optically thin and thick astrophysical plasmas, J. Quant. Spectrosc. Radiat. Transfer, 237 (2019), 106633.
[74] J.M. Gil, P.R. Beltran, R. Rodriguez, G. Espinosa, M.D. Barriga-Carrasco and L. Gonzalez-Gallego, Bound electron stopping power model of partially stripped ions in partially ionized plasmas, X Ray Spectr., 49 (2020), 234-238.
[75] J.M. Gil, R. Rodriguez, G. Espinosa and P.R. Beltran, Simulation of plasma mi-croscopy properties and ion beamplasma interaction processes in plasmas by using MIXKIP/RAPCAL/STOPP code, Int. J. Comput. Methods, 17 (2020), 1940009. · Zbl 07205451
[76] R.L. Singh, C. Stehle, F. Suzuki-Vidal, M. Kozlova, J. Larour, U. Chaulagain, T. Clayson, R. Rodriguez, J.M. Gil, J. Nejdl, M. Krus, J. Dostal, R. Dudzak, P. Barroso, O. Acef, M. Cotelo and P. Velarde, Experimental study of the interaction of two laser-driven radiative shocks at the PALS laser, High Energy Density Phys., 23 (2017), 20-30.
[77] T. Clayson, F. Suzuki-Vidal, S.V. Lebedev, G.F. Swadling, C. Stehle, G.C. Burdiak, J.M. Foster, J. Skidmore, P. Graham, E. Gumbrell, S. Patankar, C. Spindloe, U. Chaulagain, M. Kozlova, J. Larour, R.L. Singh, R. Rodriguez, J.M. Gil, G. Espinosa, P. Velarde, C. Danson, Counter-propagating radiative shock experiments on the Orion laser and the formation of radiative precursors, High Energy Density Phys., 23 (2017), 60-72.
[78] F. Suzuki-Vidal, T. Clayson, C. Stehle, G.F. Swadling, J.M. Foster, J. Skidmore, P. Gra-ham, G.C. Burdiak, S.V. Lebedev, U. Chaulagain, R.L. Singh, E.T. Gumbrell, S. Patankar, C. Spindloe, J. Larour, M. Kozlova, R. Rodriguez, J.M. Gil, G. Espinosa, P. Velarde, C. Dan-son, Counterpropagating radiative shock experiments on the Orion laser, Phys. Rev. Lett., 119 (2017), 055001.
[79] D. Mihalas and B. Weibel-Mihalas, Foundations of radiation hydrodynamics, Dover Publi-cations, San Francisco, 1999. · Zbl 0651.76005
[80] L. Butenmeyer, R. Banerjee, T. Peters, M. Klassen and R.E. Pudritz, Radiation hydrodynam-ics using characteristics on adaptative decomposed domains for massively paralle star for-mation simulations, New Astron., 41 (2016), 49-69.
[81] D. Lacroix, G. Jeandel and C. Boudot, Solution of the radiative transfer equation in an ab-sorbing and scattering Nd:YAG laser-induced plume, J. Appl. Phys., 84 (1998), 2443-2449.
[82] M. Gonzalez, C. Garcia-Fernandez and P. Velarde, 2D numerical comparison between S n and M 1 radiation transport methods, Ann. Nucl. Energy, 36 (2009), 886-895.
[83] R. Rodriguez, G. Espinosa, J.M. Gil, J.G. Rubiano, M.A. Mendoza, P. Martel, E. Minguez, Parametrization of mean radiative properties of optically thin steady-state plasmas and ap-plications, Commun. Comput. Phys., 16 (2014), 612-631. · Zbl 1373.82092
[84] R. Rodriguez, R. Florido, J.M. Gil, J.G. Rubiano, P. Martel, E. Minguez, RAPCAL code: a computational package to compute radiative properties for optically thin and thick low and high-Z plasmas in a wide range of density and temperature, Laser Part. Beams, 26 (2008), 433-448.
[85] M. S. Dimitrijevic and N. Konjevic, Simple estimates for Stark-broadening of ion lines in stellar plasmas, Astron. & Astrophys., 172, (1987), 345-349.
[86] S.J. Rose, Calculations of the radiative opacity of laser-produced plasmas, J. Phys. B., 25 (1992), 1667-1681.
[87] M.F. Gu, Can. J. Phys, The flexible atomic code, 86 (2008), 675-689.
[88] S. Hansen, C.J. Fontes, J. Colgan, J. Jr. Abdallah, H.K. Chung, H.A. Scott, V. Novikov, O. Peyrusse, G.J. Ferland, R.J.R. Williams and Yu. Ralchenko, Modern methods in collisional-radiative modeling of plasmas, Springer, Berlin, 2016.
[89] P. Martel, L. Doreste, E. Minguez, and J.M. Gil, A parametric potential for ions from helium to iron isoelectronic sequences, J. Quant. Spectrosc. Radiat. Transfer, 54 (1995), 621-636.
[90] J.M. Gil, P. Martel, E. Minguez, J.G. Rubiano, R. Rodriguez and F.H. Ruano, An effective analytical potential including plasma effects, J. Quant. Spectrosc. Radiat. Transfer 75 (2002) 539-557.
[91] R. Rodriguez, J.G. Rubiano, J.M. Gil, P. Martel, E. Minguez and R. Florido, Development of an analytical potential to include excited configurations, J. Quant. Spectrosc. Radiat. Trans-fer, 75 (2002), 723-739.
[92] R. Rodriguez, J.M. Gil, J.G. Rubiano, R. Florido, P. Martel and E. Minguez, Relativistic quantum mechanic calculation of photoionization cross-section of hydrogenic and non-hydrogenic states using analytical potential, J. Quant. Spectrosc. Radiat. Transfer 91 (2005) 393-413.
[93] R. Rodriguez, J.M. Gil, R. Florido, Photoionization cross section of non-hydrogenic levels for weakly coupled plasmas, J. Quant. Spectrosc. Radiat. Transfer 108 (2007) 239-255.
[94] J. Colgan, D. Kilcrease, N. Magee, M. Sherrill, J.J. Abdallah, P. Hakel and C. Fontes, A new generation of Los Alamos opacity tables, Astrophys. J., 817 (2016) 116.
[95] J.C. Stewart and K.D. Pyatt, Lowering of ionization potentials in plasmas, Astrophys. J., 144 (1966) 1203-1211.
[96] C. Chenais-Popovics, V. Malka, J.C. Gauthier, S. Gary, O Peyrusse, M. Rabec-Le Gloahec, I. Matsushima, C. Bauche-Arnoult, A. Bachelier, J. Bauche, X-ray emission of a xenon gas jet plasma diagnosed with Thomson scattering, Phys. Rev. E, 65 (2002) 046418.
[97] O. Peyrusse, A superconfiguration model for broadband spectroscopy of non-LTE plasmas, J. Phys. B: At. Mol. Opt. Phys., 33 (2000) 43034321.
[98] M.E. Foord, S.H. Glenzer, R.S. Toe, K.L. Wong, K.B. Fournier, B.G. Wilson, P.T. Springer, Ion-ization processes and charge-state distributions in a highly ionized high-Z laser-produced plasma, Phys. Rev. Lett., 85 (2000) 992-995.
[99] A. Bar-Shalom, J. Oreg, W.H. Goldstein, D. Shvarts, A. Zigler, Super-transition-arrays: A model for the spectral analysis of hot, dense plasma, Phys. Rev. A, 40 (1989) 3183-3193.
[100] A. Bar-Shalom, J. Oreg, Photoelectric effect in the super transition array model, Phys. Rev. E, 54 (1996) 1850-1856.
[101] R. Schott, F. Philippe, P. Angelo, A. Poquerousse, E. Leboucher-Dalimier, P. Sauvan, P. Ve-larde, F. Ogando, E. Minguez, J.M. Gil, J.G. Rubiano, R. Rodriguez, P. Martel and R. Mancini, Access to spectrally resolved ultra-dense hot low Z emissivities and opacities, 16th Interna-tional Conference on Spectral Line-Shapes, 12 (2002) 340-351.
[102] R. Schott, F. Philippe, P. Angelo, E. Dufour, A. Poquerousse, E. Dalimier, P. Sauvan, E. Minguez, J.M. Gil, J.G. Rubiano, R. Rodriguez, P. Martel and R. Mancini, Low Z opacities at high densities, J. Quant. Spectrosc. Radiat. Transfer, 81 (2003), 441-450.
[103] F. Ogando and P. Velarde, Development of a radiation transport fluid dynamic code under AMR, J. Quant. Spectrosc. Radiat. Transfer, 71 (2001), 541-550.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.