×

RHDLPP: a multigroup radiation hydrodynamics code for laser-produced plasmas. (English) Zbl 07867587

Summary: In this paper, we introduce the RHDLPP, a flux-limited multigroup radiation hydrodynamics numerical code designed for simulating laser-produced plasmas in diverse environments. The code bifurcates into two packages: RHDLPP-LTP for low-temperature plasmas generated by moderate-intensity nanosecond lasers, and RHDLPP-HTP for high-temperature, high-density plasmas formed by high-intensity laser pulses. The core radiation hydrodynamic equations are resolved in the Eulerian frame, employing an operator-split method. This method decomposes the solution into two substeps: first, the explicit resolution of the hyperbolic subsystems integrating radiation and fluid dynamics; second, the implicit treatment of the parabolic part comprising stiff radiation diffusion, heat conduction, and energy exchange. Laser propagation and energy deposition are modeled through a hybrid approach, combining geometrical-optics ray-tracing in sub-critical plasma regions with a one-dimensional solution of the Helmholtz wave equation in super-critical areas. The thermodynamic states are ascertained using an equation of state, based on either the real gas approximation or the quotidian equation of state (QEOS). For ionization calculations, the code employs a steady-state collisional-radiation (CR) model using the screened-hydrogenic approximation. Additionally, RHDLPP includes RHDLPP-SpeIma3D, a three-dimensional spectral simulation post-processing module, for generating both temporally-spatially resolved and time-integrated spectra and imaging, facilitating direct comparisons with experimental data. The paper showcases a series of verification tests to establish the code’s accuracy and efficiency, followed by application cases, including simulations of laser-produced aluminium (Al) plasmas, pre-pulse-induced target deformation of tin (Sn) microdroplets relevant to extreme ultraviolet lithography light sources, and varied imaging and spectroscopic simulations. These simulations highlight RHDLPP’s effectiveness and applicability in fields such as laser-induced breakdown spectroscopy, extreme ultraviolet lithography sources, and high-energy-density physics.

MSC:

78-XX Optics, electromagnetic theory
76-XX Fluid mechanics

References:

[1] Singh, R. K.; Narayan, J., Pulsed-laser evaporation technique for deposition of thin films: physics and theoretical model, Phys. Rev. B, 41, 8843, 1990
[2] Miziolek, A. W.; Palleschi, V.; Schechter, I., Laser-Induced Breakdown Spectroscopy (LIBS): Fundamentals and Applications, 2006, Cambridge University Press: Cambridge University Press Cambridge
[3] Hahn, D. W.; Omenetto, N., Laser-induced breakdown spectroscopy (LIBS), Part I: review of basic diagnostics and plasma-particle interactions: still-challenging issues within the analytical plasma community, Appl. Spectrosc., 64, 335A, 2010
[4] Remington, B. A.; Arnett, D.; Drake, R. P.; Takabe, H., Modeling astrophysical phenomena in the laboratory with intense lasers, Science, 284, 1488, 1999
[5] Nuckolls, J.; Wood, L.; Theissen, A.; Zimmerman, G., Laser compression of matter to super-high densities: thermonuclear (CTR) applications, Nature, 239, 139, 1972
[6] Versolato, O. O., Physics of laser-driven tin plasma sources of EUV radiation for nanolithography, Plasma Sources Sci. Technol., 28, Article 083001 pp., 2019
[7] Zhao, H. Y.; Jin, Q. Y.; Sha, S.; Zhang, J. J.; Li, Z. M.; Liu, W.; Sun, L. T.; Zhang, X. Z.; Zhao, H. W., The study towards high intensity high charge state laser ion sources, Rev. Sci. Instrum., 85, 02B910, 2014
[8] P. Drake, R., High-energy-density physics, 2006, Springer: Springer Berlin
[9] Carroll, P. K.; Kennedy, E. T., Laser-produced plasmas, Contemp. Phys., 22, 61, 1981
[10] Capitelli, M.; Casavola, A.; Colonna, G.; De Giacomo, A., Laser-induced plasma expansion: theoretical and experimental aspects, Spectrochim. Acta Part B, 59, 271, 2004
[11] Harilal, S. . S.; Phillips, M. . C.; Froula, D. . H.; Anoop, K. . K.; Issac, R. . C.; Beg, F. N., Optical diagnostics of laser-produced plasmas, Rev. Mod. Phys., 94, Article 035002 pp., 2022
[12] Fryxell, B.; Olson, K.; Ricker, P.; Timmes, F. X.; Zingale, M.; Lamb, D. Q.; MacNeice, P.; Rosner, R.; Truran, J. W.; Tufo, H., FLASH: an adaptive mesh hydrodynamics code for modeling astrophysical thermonuclear flashes, ApJS, 131, 273, 2000
[13] van der Holst, B.; Tóth, G.; Sokolov, I. V.; Powell, K. G.; Holloway, J. P.; Myra, E. S.; Stout, Q.; Adams, M. L.; Morel, J. E.; Karni, S.; Fryxell, B.; Drake, R. P., CRASH: a Block-adaptive-mesh code for radiative shock hydrodynamics—implementation AND Verification, ApJS, 194, 23, 2011
[14] Gittings, M.; Weaver, R.; Clover, M.; Betlach, T.; Byrne, N.; Coker, R.; Dendy, E.; Hueckstaedt, R.; New, K.; Oakes, W. R.; Ranta, D.; Stefan, R., The RAGE radiation-hydrodynamic code, Comput. Sci. Discovery, 1, Article 015005 pp., 2008
[15] Haines, Brian M.; Keller, D. E.; Long, K. P.; McKay, M. D.; Medin, Z. J.; Park, H.; Rauenzahn, R. M.; Scott, H. A.; Anderson, K. S.; Collins, T. J.B.; Green, L. M.; Marozas, J. A.; McKenty, P. W.; Peterson, J. H.; Vold, E. L.; Di Stefano, C.; Lester, R. S.; Sauppe, J. P.; Stark, D. J.; Velechovsky, J., The development of a high-resolution Eulerian radiation-hydrodynamics simulation capability for laser-driven Hohlraums, Phys. Plasmas, 29, Article 083901 pp., 2022
[16] Koshelev, K. N.; Ivanov, V. V.; Noivkov, V. G.; Medvedev, V.; Grushin, A. S.; Krivtsun, V. M., RZLINE code modeling of distributed tin targets for laser-produced plasma sources of extreme ultraviolet radiation, J. Micro/Nanolith. MEMS MOEMS, 11, Article 021112 pp., 2012
[17] Sizyuk, T.; Hassanein, A., Extending the path for efficient extreme ultraviolet sources for advanced nanolithography, Phys. Plasmas, 22, Article 093101 pp., 2015
[18] Larsen, J. T.; Lane, S. M., HYADES—A plasma hydrodynamics code for dense plasma studies, J. Quant. Spectrosc. Radiat. Transf., 51, 179, 1994
[19] Christiansen, J. P.; Ashby, D. E.T. F.; Roberts, K. V., MEDUSA a one-dimensional laser fusion code, Computer Phys. Commun., 7, 271, 1974
[20] Ramis, R.; Schmalz, R.; Meyer-Ter-Vehn, J., MULTI — A computer code for one-dimensional multigroup radiation hydrodynamics, Computer Phys. Commun., 49, 475, 1988
[21] Ramis, R.; Eidmann, K.; Meyer-ter-Vehn, J.; Hüller, S., MULTI-fs - A computer code for laser-plasma interaction in the femtosecond regime, Computer Phys. Commun., 183, 637, 2012
[22] Iskakov, A. B.; Tishkin, V. F.; Lebo, I. G.; Limpouch, J.; Mašek, K.; Rohlena, K., Two-dimensional model of thermal smoothing of laser imprint in a double-pulse plasma, Phys. Rev. E, 61, 842, 2000
[23] MacFarlane, J. J.; Golovkin, I. E.; Woodruff, P. R., HELIOS-CR - A 1-D radiation-magnetohydrodynamics code with inline atomic kinetics modeling, J. Quant. Spectrosc. Radiat. Transf., 99, 381, 2006
[24] J.A. Harte, W.E. Alley, D.S. Bailey, J.L. Eddleman, G.B. Zimmerman, LASNEXN — A 2-D Physics code for modeling ICF, Inertial Confinement fusion: 1996 ICF Annual Report, UCRL-LR-105821-96.
[25] Song, P.; Zhai, C. L.; Li, S. G.; Yong, H.; Qi, J.; Hang, X. D.; Yang, R.; Cheng, J.; Zeng, Q. H.; Hu, X. Y.; Wang, S.; Shi, Y.; Zheng, W. D.; Gu, P. J.; Zou, S. Y.; Li, X.; Zhao, Y. Q.; Zhang, H. S.; Zhang, A. Q.; An, H. B.; Li, J. H.; Pei, W. B.; Zhu, S. P., LARED-Integration code for numerical simulation of the whole process of the indirect-drive laser inertial confinement fusion, High Power Laser Particle Beams, 27, Article 032007 pp., 2015
[26] Marinak, M. M.; Haan, S. W.; Dittrich, T. R.; Tipton, R. E.; Zimmerman, G. B., A comparison of three-dimensional multimode hydrodynamic instability growth on various National Ignition Facility capsule designs with HYDRA simulations, Phys. Plasmas, 5, 1125, 1998
[27] Shestakov, A. I.; Prasad, M. K.; Milovich, J. L.; Gentile, N. A.; Painter, J. F.; Furnish, G., The radiation-hydrodynamic ICF3D code, Comput. Methods Appl. Mech. Engrg., 187, 181, 2000 · Zbl 0981.76057
[28] Ramis, R.; Meyer-ter-Vehn, J.; Ramírez, J., MULTI2D - a computer code for two-dimensional radiation hydrodynamics, Computer Phys. Commun., 180, 977, 2009 · Zbl 1198.76005
[29] Basko, M. M.; Sasorov, P. V.; Murakami, M.; Novikov, V. G.; Grushin, A. S., One-dimensional study of the radiation-dominated implosion of a cylindrical tungsten plasma column, Plasma Phys. Control. Fusion, 54, Article 055003 pp., 2012
[30] Liska, R.; Limpouch, J.; Kuchařík, M.; Renner, O., Selected laser plasma simulations by ALE method, J. Phys.: Conf. Ser., 112, Article 022009 pp., 2008
[31] Breil, J.; Galera, S.; Maire, P. H., Multi-material ALE computation in inertial confinement fusion code CHIC, Comput. Fluids, 46, 161, 2011 · Zbl 1433.76190
[32] Sijoy, C. D.; Chaturvedi, S., TRHD: three-temperature radiation-hydrodynamics code with an implicit non-equilibrium radiation transport using a cell-centered monotonic finite volume scheme on unstructured-grids, Computer Phys. Commun., 190, 98, 2015 · Zbl 1344.76057
[33] Nishihara, K.; Sunahara, A.; Sasaki, A.; Nunami, M.; Tanuma, H., Plasma physics and radiation hydrodynamics in developing an extreme ultraviolet light source for lithography, Phys. Plasmas, 15, Article 056708 pp., 2008
[34] MacFarlane, J. J.; Golovkin, I. E.; Wang, P.; Woodruff, P. R.; Pereyra, N. A., SPECT3D - A multi-dimensional collisional-radiative code for generating diagnostic signatures based on hydrodynamics and PIC simulation output, High Energ. Dens. Phys., 3, 181, 2007
[35] Hakel, P., FESTR: finite-element spectral transfer of radiation spectroscopic modeling and analysis code, Computer Phys. Commun., 207, 415, 2016
[36] Scott, H. A., Cretin—A radiative transfer capability for laboratory plasmas, J. Quant. Spectrosc. Radiat. Transf., 71, 689, 2001
[37] Castor, J. I., Radiation Hydrodynamics, 2004, Cambridge University Press
[38] Basko, M. M.; Tsygvintsev, I. P., A hybrid model of laser energy deposition for multi-dimensional simulations of plasmas and metals, Computer Phys. Commun., 214, 59, 2017 · Zbl 1376.78014
[39] Liu, Q.; Min, Q.; Su, M. G.; Liu, X. B.; Cao, S. Q.; Sun, D. X.; Dong, C. Z.; Fu, Y. B., Numerical simulation of nanosecond laser ablation and plasma characteristics considering a real gas equation of state, Plasma Sci. Technol., 23, Article 125001 pp., 2021
[40] More, R. M.; Warren, K. H.; Young, D. A.; Zimmerman, G. B., A new quotidian equation of state (QEOS) for hot dense matter, Phys. Fluids, 31, 3059, 1988 · Zbl 0654.76042
[41] Min, Q.; Shen, R. Z.; Su, M. G.; Lu, H. D.; He, S. Q.; Liu, X. B.; Li, Y.; Tao, Q. Q.; Wu, Y. H.; Sun, D. X.; Cao, S. Q.; Dong, C. Z., Two-dimensional axisymmetric radiation hydrodynamics model of moderate-intensity nanosecond laser-produced plasmas, J. Phys. D: Appl. Phys., 55, Article 505205 pp., 2022
[42] Chung, H. K.; Chen, M. H.; Morgan, W. L.; Ralchenko, Y.; Lee, R. W., FLYCHK: generalized population kinetics and spectral model for rapid spectroscopic analysis for all elements, High Energ, Dens. Phys., 1, 3, 2005
[43] Yoo, J. H.; Jeong, S. H.; Mao, X. L.; Greif, R.; Russo, R. E., Evidence for phase-explosion and generation of large particles during high power nanosecond laser ablation of silicon, Appl. Phys. Lett., 76, 783, 2000
[44] Porneala, C.; Willis, D. A., Observation of nanosecond laser-induced phase explosion in aluminium, Appl. Phys. Lett., 89, Article 211121 pp., 2006
[45] Amoruso, S.; Bruzzese, R.; Spinelli, N.; Velotta, R., Characterization of laser-ablation plasmas, J. Phys. B: At. Mol. Opt. Phys., 32, R131, 1999
[46] Knight, C. J., Theoretical modeling of rapid surface vaporization with back pressure, AIAA J, 17, 519, 1979
[47] Wu, B.; Shin, Y. C.; Pakhal, H.; Laurendeau, N. M.; Lucht, R. P., Modeling and experimental verification of plasmas induced by high-power nanosecond laser-aluminium interactions in air, Phys. Rev. E, 76, Article 026405 pp., 2007
[48] Zhang, W.; Howell, L.; Almgren, A.; Burrows, A.; Bell, J.; Castro:, A., New compressible astrophysical solver. Ii. Gray radiation hydrodynamics, ApJS, 196, 20, 2011
[49] Zhang, W.; Howell, L.; Almgren, A.; Burrows, A.; Dolence, J.; Bell, J., Castro: a new compressible astrophysical solver. iii. multigroup radiation hydrodynamics, ApJS, 204, 7, 2013
[50] Minerbo, G. N., Maximum entropy Eddington factors, J. Quant. Spectrosc. Radiat. Transf., 20, 541, 1978
[51] Levermore, G. D.; Pomraning, G. C., A flux-limited diffusion theory, ApJ, 248, 321, 1981
[52] Morel, J. E., Diffusion-limit asymptotics of the transport equation, the P1/3 equations, and two flux-limited diffusion theories, J. Quant. Spectrosc. Radiat. Transf., 65, 769, 2000
[53] Toro, E. F., Riemann Solvers and Numerical Methods for Fluid dynamics: a Practical Introduction, 2013, Springer: Springer Berlin
[54] Roe, P. L., Approximate Riemann solvers, parameter vectors, and difference schemes, J. Comput. Phys., 43, 357, 1981 · Zbl 0474.65066
[55] Chang, C. H.; Liou, M. S., A Robust and accurate approach to computing compressible multiphase flow: stratified flow model and AUSM+ up Scheme, J. Comput. Phys., 225, 840, 2007 · Zbl 1192.76030
[56] LeVeque, R. J., Finite Volume Methods for Hyperbolic Problems, 2002, Cambridge University Press · Zbl 1010.65040
[57] Teunissen, J.; Keppens, R., A geometric multigrid library for quadtree/octree AMR grids coupled to MPI-AMRVAC, Computer Phys. Commun., 245, Article 106866 pp., 2019 · Zbl 07674877
[58] Falgout, R. D.; Yang, U. M., hypre: a library of high-performance preconditioners, (ICCS ’02: Proceedings of the International Conference on Computational Science-Part III, 2002), 632-641 · Zbl 1056.65046
[59] Shabanov, S. V.; Gornushkin, I. B., Two-dimensional axisymmetric models of laser induced plasmas relevant to laser induced breakdown spectroscopy, Spectrochim. Acta Part B, 100, 147, 2014
[60] Nikiforov, A. F.; Novikov, V. G.; Uvarov, V. B., Quantum-Statistical Models of Hot Dense Matter: Methods for Computation Opacity and Equation of State, 2005, Birkhäuser Verlag · Zbl 1073.81001
[61] Dyachkov, S.; Levashov, P., Region of validity of the finite-temperature Thomas-fermi model with respect to quantum and exchange corrections, Phys. Plasmas, 21, Article 052702 pp., 2014
[62] Press, W. H.; Teukolsky, S. A., Adaptive Stepsize Runge-Kutta Integration, Comput. Phys., 6, 188, 1992
[63] Bhattacharya, Chandrani; Srivastava, M. K., Equation of state using scaled binding energy model, J. Appl. Phys., 102, Article 064915 pp., 2007
[64] Heltemes, T. A.; Moses, G. A., BADGER v1.0: a Fortran equation of state library, Computer Phys. Commun., 183, 2629, 2012
[65] Faik, S.; Tauschwitz, A.; Iosilevskiy, I., The equation of state package FEOS for high energy density matter, Computer Phys. Commun., 227, 117, 2018
[66] Gilleron, F.; Piron, R., The fast non-LTE code DEDALE, High Energ. Dens. Phys., 17, 219, 2015
[67] Kaiser, T. B., Laser ray tracing and power deposition on an unstructured three-dimensional grid, Phys. Rev. E, 61, 895, 2000
[68] Povarnitsyn, M. E.; Andreev, N. E.; Levashov, P. R.; Khishchenko, K. V.; Rosmej, O. N., Dynamics of thin metal foils irradiated by moderate-contrast high-intensity laser beams, Phys. Plasmas, 19, Article 023110 pp., 2012
[69] Meyer-ter-Vehn, J.; Ramis, R., On collisional free-free photon absorption in warm dense matter, Phys. Plasmas, 26, Article 113301 pp., 2019
[70] Hakel, P.; Sherrill, M. E.; Mazevet, S.; Abdallah, J.; Colgan, J.; Kilcrease, D. P.; Magee, N. H.; Fontes, C. J.; Zhang, H. L., The new Los Alamos opacity code ATOMIC, J. Quant. Spectrosc. Radiat. Transf., 99, 265, 2006
[71] Gao, C.; Zeng, J. L.; Li, Y. Q.; Jin, F. T.; Yuan, J. M., Versatile code DLAYZ for investigating population kinetics and radiative properties of plasmas in non-local thermodynamic equilibrium, High Energ, Dens. Phys., 9, 583, 2013
[72] He, S. Q.; Min, Q.; Su, M. G.; Lu, H. D.; Wu, Y. H.; Cao, S. Q.; Sun, D. X.; Zhang, D. H.; Dong, C. Z., Real optical imaging simulation of laser-produced aluminium plasmas, Opt. Express, 31, 7249, 2023
[73] Magee, N. H.; Abdallah, J.; Clark, R. E.H.; Cohen, J. S.; Collins, L. A.; Csanak, G.; Fontes, C. J.; Gauger, A.; Keady, J. J.; Kilcrease, D. P.; Merts, A. L., Atomic structure calculations and new los alamos astrophysical opacities, (Astronomical Society of the Pacific Conference Series (Astrophysical Applications of Powerful New Databases, S. J. Adelman and W. L. Wiese eds.), 78, 1995), 51
[74] MacFarlane, J. J., IONMIX - a code for computing the equation of state and radiative properties of LTE and non-LTE plasmas, Computer Phys. Commun., 56, 259, 1989
[75] Rodríguez, R.; Florido, R.; Gil, J. M.; Rubiano, J. G.; Martel, P.; Mínguez, E.; code, RAPCAL, A flexible package to compute radiative properties for optically thin and thick low and high-Z plasmas in a wide range of density and temperature, Laser Part. Beams., 26, 433, 2008
[76] Mazhukin, V. I.; Nossov, V. V.; Smurov, I., Modeling of plasma-controlled evaporation and surface condensation of Al induced by 1.06 and 0.248 μm laser radiations, J. Appl. Phys., 101, Article 024922 pp., 2007
[77] Reinicke, P.; Meyer-ter-Vehn, J., The point explosion with heat conduction, Phys. Fluids A, 3, 1807, 1991 · Zbl 0745.76071
[78] Lowrie, R. B.; Edwards, J. D., Radiative shock solutions with grey nonequilibrium diffusion, Shock Waves, 18, 129, 2008 · Zbl 1255.76057
[79] Shestakov, A. I.; Bolstad, J. H., An exact solution for the linearized multifrequency radiation diffusion equation, J. Quant. Spectrosc. Radiat. Transf., 91, 133, 2005
[80] Fomenkov, I.; Brandt, D.; Ershov, A.; Schafgans, A.; Tao, Y. Z.; Vaschenko, G.; Rokitski, S.; Kats, M.; Vargas, M.; Purvis, M.; Rafac, R.; Fontaine, B. La; De Dea, S.; LaForge, A.; Stewart, J.; Chang, S.; Graham, M.; Riggs, D.; Taylor, T.; Abraham, M.; Brown, D., Light sources for high-volume manufacturing EUV lithography: technology, performance, and power scaling, Adv. Opt. Techn., 6, 173, 2017
[81] Klein, A. L.; Bouwhuis, W.; Visser, C. W.; Lhuissier, H.; Sun, C.; Snoeijer, J. H.; Villermaux, E.; Lohse, D.; Gelderblom, H., Drop shaping by laser-pulse impact, Phys. Rev. Appl., 3, Article 044018 pp., 2015
[82] Gelderblom, H.; Lhuissier, H.; Klein, A. L.; Bouwhuis, W.; Lohse, D.; Villermaux, E.; Snoeijer, J. H., Drop deformation by laser-pulse impact, J. Fluid Mech., 794, 676, 2016
[83] Hernandez-Rueda, J.; Liu, B.; Hemminga, D. J.; Mostafa, Y.; Meijer, R. A.; Kurilovich, D.; Basko, M.; Gelderblom, H.; Sheil, J.; Versolato, O. O., Early-time hydrodynamic response of a tin droplet driven by laser-produced plasma, Phys. Rev. Research, 4, Article 013142 pp., 2022
[84] Krivokorytov, M. S.; Yu. Vinokhodov, A.; Sidelnikov, Yu. V.; Krivtsun, V. M.; Kompanets, V. O.; Lash, A. A.; Koshelev, K. N.; Medvedev, V. V., Cavitation and spallation in liquid metal droplets produced by subpicosecond pulsed laser radiation, Phys. Rev. E, 95, Article 031101 pp., 2017, (R).
[85] Yu. Grigoryev, S.; Lakatosh, B. V.; Krivokorytov, M. S.; Zhakhovsky, V. V.; Dyachkov, S. A.; Ilnitsky, D. K.; Migdal, K. P.; Inogamov, N. A.; Yu. Vinokhodov, A.; Kompanets, V. O.; Sidelnikov, Yu. V.; Krivtsun, V. M.; Koshelev, K. N.; Medvedev, V. V., Expansion and fragmentation of a liquid-metal droplet by a short laser pulse, Phys. Rev. Appl., 10, Article 064009 pp., 2018
[86] Basko, M. M.; Krivokorytov, M. S.; Yu. Vinokhodov, A.; Sidelnikov, Yu. V.; Krivtsun, V. M.; Medvedev, V. V.; Kim, D. A.; Kompanets, V. O.; Lash, A. A.; Koshelev, K. N., Fragmentation dynamics of liquid-metal droplets under ultra-short laser pulses, Laser Phys. Lett., 14, Article 036001 pp., 2017
[87] Min, Q.; Su, M. G.; Wang, B.; Wu, L.; He, S. Q.; Sun, D. X.; Cao, S. Q.; Dong, C. Z., Investigation of the expansion dynamics of silicon plasmas generated by double nanosecond laser pulses, Phys. Plasmas, 25, Article 073302 pp., 2018
[88] Li, M. J.; Su, M. G.; Li, H. Y.; Min, Q.; Cao, S. Q.; Sun, D. X.; Zhang, D. H.; Dong, C. Z., Extreme ultraviolet spectral characteristic analysis of highly charged ions in laser-produced Cu plasmas, Plasma Sci. Technol., 25, Article 045505 pp., 2023
[89] Cowan, R. D., The Theory of Atomic Structure and Spectra, 1981, University of California Press
[90] Pan, Y.; Tomita, K.; Sunahara, A.; Sasaki, A.; Nishihara, K., Joint measurement of electron density, temperature, and emission spectrum of Nd:YAG laser-produced tin plasma, Appl. Phys. Lett., 123, Article 204103 pp., 2023
[91] O’Sullivan, G.; Carroll, P. K., 4d-4f emission resonances in laser-produced plasmas, J. Opt. Soc. Am., 71, 227, 1981
[92] Sasaki, A.; Sunahara, A.; Furukawa, H.; Nishihara, K.; Fujioka, S.; Nishikawa, T.; Koike, F.; Ohashi, H.; Tanuma, H., Modeling of radiative properties of Sn plasmas for extreme-ultraviolet source, J. Appl. Phys., 107, Article 113303 pp., 2010
[93] Torretti, F.; Sheil, J.; Schupp, R.; Basko, M. M.; Bayraktar, M.; Meijer, R. A.; Witte, S.; Ubachs, W.; Hoekstra, R.; Versolato, O. O.; Neukirch, A. J.; Colgan, J., Prominent radiative contributions from multiply excited states in laser-produced tin plasma for nanolithography, Nat. Commun., 11, 2334, 2020
[94] Sheil, J.; Versolato, O. O.; Neukirch, A. J.; Colgan, J., Multiply-excited states and their contribution to opacity in CO_2 laser-driven tin-plasma conditions, J. Phys. B: At. Mol. Opt. Phys., 54, Article 035002 pp., 2021
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.