×

A drift-kinetic semi-Lagrangian 4D code for ion turbulence simulation. (English) Zbl 1160.76385

Summary: A new code is presented here, named Gyrokinetic SEmi-LAgragian (GYSELA) code, which solves 4D drift-kinetic equations for ion temperature gradient driven turbulence in a cylinder \((r, \theta , z)\). The code validation is performed with the slab ITG mode that only depends on the parallel velocity. This code uses a semi-Lagrangian numerical scheme, which exhibits good properties of energy conservation in non-linear regime as well as an accurate description of fine spatial scales. The code has been validated in the linear and non-linear regimes. The GYSELA code is found to be stable over long simulation times (more than 20 times the linear growth rate of the most unstable mode), including for cases with a high resolution mesh \((\delta r \sim 0.1\) Larmor radius, \(\delta z\sim 10\) Larmor radius).

MSC:

76M25 Other numerical methods (fluid mechanics) (MSC2010)
76F99 Turbulence
76X05 Ionized gas flow in electromagnetic fields; plasmic flow

Software:

gs2; GYGLES; GYSELA

References:

[1] Dimits, A. M., Comparisons and physics basis of tokamak transport models and turbulence simulations, Phys. Plasmas, 7, 3, 969-983 (2000)
[2] Hammett, G. W.; Perkins, F. W., Fluid models for Landau damping with application to the ion-temperature-gradient instability, Phys. Rev. Lett., 64, 3019-3022 (1990)
[3] M.A. Beer, Gyrofluid Models of Turbulent Transport in Tokamaks, Ph.D. Thesis, Princeton University, 1995.; M.A. Beer, Gyrofluid Models of Turbulent Transport in Tokamaks, Ph.D. Thesis, Princeton University, 1995.
[4] Waltz, R. E.; Staebler, G. M.; Dorland, W., A gyro-Landau-fluid transport model, Phys. Plasmas, 4, 2482-2496 (1997)
[5] Lee, W. W., Gyrokinetic approach in particle simulation, Phys. Fluids, 26, 2, 556 (1983) · Zbl 0576.76120
[6] Kim, C. C.; Parker, S. E., Massively Parallel three dimensional Toroidal gyrokinetic Flux-Tube turbulence Simulations, J. Comput. Phys., 161, 2, 589-604 (2000) · Zbl 0980.76058
[7] Lin, Z.; Hahm, T. S.; Lee, W. W.; Tang, W. M.; White, R. B., Gyrokinetic simulations in general geometry and applications to collisional damping of zonal flows, Phys. Plasmas, 7, 5, 1857-1862 (2000)
[8] T.M. Tran, K. Appert, M. Fivaz, G. Jost, J. Vaclavik, L. Villard, Global gyrokinetic simulation of Ion-Temperature-Gradient driven instabilities, Th. Fusion Plasmas, in: Proceedings of the International Workshop, Varenna, 1998, Ed. Compositori, Bologna, 1999, pp. 45-49.; T.M. Tran, K. Appert, M. Fivaz, G. Jost, J. Vaclavik, L. Villard, Global gyrokinetic simulation of Ion-Temperature-Gradient driven instabilities, Th. Fusion Plasmas, in: Proceedings of the International Workshop, Varenna, 1998, Ed. Compositori, Bologna, 1999, pp. 45-49.
[9] A. Bottino, T.M. Tran, O. Sauter, J. Vaclavik, L. Villard, Linear gyrokinetic simulations using particles for small perpendicular wavelength perturbations, Th. Fusion Plasmas, in: Proceedings of the International Workshop, Varenna, 2000, Ed. Compositori, Bologna, 2001, pp. 327-332.; A. Bottino, T.M. Tran, O. Sauter, J. Vaclavik, L. Villard, Linear gyrokinetic simulations using particles for small perpendicular wavelength perturbations, Th. Fusion Plasmas, in: Proceedings of the International Workshop, Varenna, 2000, Ed. Compositori, Bologna, 2001, pp. 327-332.
[10] Idomura, Y.; Tokuda, S.; Kishimoto, Y., Global gyrokinetic simulation of ion temperature gradient driven turbulence in plasmas using a canonical Maxwellian distribution, Nucl. Fusion, 43, 234-243 (2003)
[11] Sugama, H.; Watanabe, T. H.; Horton, W., Comparison between kinetic and fluid simulations of slab ion temperature gradient driven turbulence, Phys. Plasmas, 10, 3, 726-736 (2003)
[12] Birdsall, C. K.; Langdon, A. B., Plasma Physics via Computer Simulation (1985), McGraw-Hill: McGraw-Hill New York
[13] Hatzky, R.; Tran, T. M.; Könies, A., Energy conservation in a nonlinear gyrokinetic Particle-In-Cell code for ion-temperature-gradient-driven modes in theta-pinch geometry, Phys. Plasmas, 9, 3, 898-912 (2002)
[14] Allfrey, S. J.; Hatzky, R., A revised delta \(f\) algorithm for nonlinear PIC simulations, Comp. Phys. Commun., 154, 2, 98-104 (2003)
[15] Villard, L.; Allfrey, S. J.; Bottino, A.; Brunetti, M.; Falchetto, G. L.; Grandgirard, V.; Hatzky, R.; Nührenberg, J.; Peeters, A. G.; Sauter, O.; Sorge, S.; Vaclavik, J., Full radius linear and non-linear gyrokinetic simulations for Tokamaks and Stellerators: zonal flows, applied \(E×\(B\) flows, trapped electrons and finite beta, Nucl. Fusion, 1, 172-180 (2004)
[16] Pohn, E.; Shoucri, M.; Kamelander, G., Eulerian Vlasov codes, Comp. Phys. Commun., 166, 2, 81-93 (2005) · Zbl 1196.82113
[17] Ghizzo, A.; Bertrand, P.; Fijalkow, E.; Feix, M. R.; Shoucri, M., An Eulerian code for the study of drift-kinetic Vlasov equation, J. Comput. Phys., 108, 1, 105-121 (1993) · Zbl 0779.65078
[18] Manfredi, G.; Shoucri, M.; Dendy, R. O.; Ghizzo, A.; Bertrand, P., Vlasov gyrokinetic simulations of ion-temperature-gradient driven instabilities, Phys. Plasmas, 3, 1, 202-217 (1996)
[19] Dorland, W.; Jenko, F.; Kotschenreuther, M.; Rogers, B. N., Electron temperature gradient turbulence, Phys. Rev. Lett., 85, 5579-5582 (2000)
[20] Jenko, F.; Dorland, W.; Kotschenreuther, M.; Rogers, B. N., Massively parallel Vlasov simulation of electromagnetic drift-wave turbulence, Comp. Phys. Commun., 125, 196-209 (2000) · Zbl 0969.76099
[21] Shoucri, M., Numerical simulation of plasma edge turbulence due to \(E×\(B\) flow velocity shear, Czech. J. Phys., 51, 10, 1139-1151 (2001)
[22] Candy, J.; Waltz, R. E., An Eulerian gyrokinetic-Maxwell solver, J. Comput. Phys., 186, 2, 545-581 (2003) · Zbl 1072.82554
[23] Fijalkow, E., A numerical solution of the Vlasov equation, Comp. Phys. Commun., 116, 319-328 (1999) · Zbl 1019.76035
[24] Filbet, F.; Sonnendrücker, E.; Bertrand, P., Conservative numerical schemes for the Vlasov equation, J. Comput. Phys., 172, 166-187 (2001) · Zbl 0998.65138
[25] Cheng, C. Z.; Knorr, G., The integration of the Vlasov equation in configuration spaces, J. Comput. Phys., 22, 330-351 (1976)
[26] Sonnendrücker, E.; Roche, J., The semi-Lagrangian method for the numerical resolution of Vlasov equation, J. Comput. Phys., 149, 201-220 (1999) · Zbl 0934.76073
[27] Depret, G.; Garbet, X.; Bertrand, P.; Ghizzo, A., Trapped-ion driven turbulence in tokamak plasmas, Plasma Phys. Control. Fusion, 42, 949-971 (2000)
[28] Brunetti, M.; Grandgirard, V.; Bertrand, P.; Sauter, O.; Vaclavik, J.; Villard, L., Fine-scale structures and negative density regions: comparison of numericals methods for solving advection equation, Transport Theory Stat. Phys., 34, 3-5, 261-274 (2005) · Zbl 1129.82019
[29] F. Jenko, W. Dorland, B. Scott, Strinzi, in: Proceedings of the 20th International School of Plasma Physics on the Theory of Fusion Plasmas, Simulation and Theory of Electromagnetic ETG Turbulence, Varenna, 2002, pp. 147-152.; F. Jenko, W. Dorland, B. Scott, Strinzi, in: Proceedings of the 20th International School of Plasma Physics on the Theory of Fusion Plasmas, Simulation and Theory of Electromagnetic ETG Turbulence, Varenna, 2002, pp. 147-152.
[30] Sarazin, Y.; Grandgirard, V.; Fleurence, E.; Garbet, X.; Ghendrih, Ph.; Bertrand, P.; Depret, G., Kinetic features of interchange turbulence, Plasma Phys. Control. Fusion, 47, 1817-1839 (2005)
[31] Press, W. H.; Teukolsky, A.; Vetterling, W. T.; Flannery, B. P., Numerical Recipes in Fortran (1992), Cambridge University Press: Cambridge University Press Cambridge, pp. 43-50 · Zbl 0778.65002
[32] Boisvert, R. F., Algorithms for special tridiagonal systems, SIAM J. Sci. Stat. Comput., 12, 2, 423-442 (1991) · Zbl 0723.65016
[33] Marchuk, G. I., Method of Numerical Mathematics (1982), Springer-Verlag: Springer-Verlag New York · Zbl 0485.65003
[34] Strang, G., On the construction and comparison of difference schemes, SIAM J. Numer. Anal., 5, 506-517 (1968) · Zbl 0184.38503
[35] DeBoor, C., A practical guide to splines, Applied Mathematical Sciences, vol. 27 (2001), Springer-Verlag: Springer-Verlag New York · Zbl 0987.65015
[36] Fried, B. D.; Conte, S. D., The Plasma Dispersion Function (1961), Academic Press: Academic Press New York
[37] Davies, B., Locating the zeros of an analytic function, J. Comput. Phys., 66, 36-49 (1986) · Zbl 0591.65039
[38] Brunner, S.; Vaclavik, J., Global approach to the spectral problem of microinstabilities in a cylindrical plasma using a gyrokinetic model, Phys. Plasmas, 5, 2, 365-375 (1998)
[39] Bourdelle, C.; Garbet, X.; Hoang, G. T.; Ongena, J.; Budny, R. V., Stability analysis of improved confinement discharges: internal barriers in Tore Supra and radiative improved mode in Textor, Nucl. Fusion, 42, 892-902 (2002)
[40] Fivaz, M.; Brunner, S.; De Ridder, G., Finite element approach to global gyrokinetic Particle-In-Cell simulations using magnetic coordinates, Comp. Phys. Commun., 111, 27-47 (1998) · Zbl 0944.76035
[41] V. Grandgirard, P. Bertrand, G. Depret, X. Garbet, A. Ghizzo, G. Manfredi, O. Sauter, T.M. Tran, J. Vaclavick, L. Villard, A semi-Lagrangian method for the resolution of a drift-kinetic equation applied to ITG studies, in: 28th EPS Conference on Controlled Fusion and Plasma Physics - Funchal, Madeira, Portugal, 2001.; V. Grandgirard, P. Bertrand, G. Depret, X. Garbet, A. Ghizzo, G. Manfredi, O. Sauter, T.M. Tran, J. Vaclavick, L. Villard, A semi-Lagrangian method for the resolution of a drift-kinetic equation applied to ITG studies, in: 28th EPS Conference on Controlled Fusion and Plasma Physics - Funchal, Madeira, Portugal, 2001.
[42] Brunetti, M.; Grandgirard, V.; Sauter, O.; Vaclavik, J.; Villard, L., A semi-Lagrangian code for nonlinear global simulations of electrostatic drift-kinetic ITG modes, Comp. Phys. Commun., 163, 1-21 (2004) · Zbl 1196.78004
[43] Watanabe, T. H.; Sugama, H., Kinetic simulation of a quasisteady state in collisionless ion temperature gradient driven turbulence, Phys. Plasmas, 9, 9, 3659-3662 (2002)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.