×

Fast eigenvalue calculations in a massively parallel plasma turbulence code. (English) Zbl 1204.68267

Summary: Magnetic fusion aims at providing \(CO_{2}\) free energy for the 21st century and well beyond. However, the success of the international fusion experiment ITER (currently under construction) will depend to a large degree on the value of the so-called energy confinement time. One of the most advanced tools describing the underlying physical processes is the highly scalable (up to at least 32,768 cores) plasma turbulence code GENE.
GENE solves a set of nonlinear partial integro-differential equations in five-dimensional phase space by means of the method of lines, with a 4th order explicit Runge-Kutta scheme for time integration. To maximize its efficiency, the code computes the eigenspectrum of the linearized equation to determine the largest possible timestep which maintains the stability of the method. This requires the computation of the largest (in terms of its magnitude) eigenvalue of a complex, non-Hermitian matrix whose size may range from a few millions to even a billion. SLEPc, the Scalable Library for Eigenvalue Problem Computations, is used to effectively compute this part of the spectrum.
Additionally, eigenvalue computations can provide new insight into the properties of plasma turbulence. The latter is driven by a number of different unstable modes, including dominant and subdominant ones, that can be determined employing SLEPc. This computation is more challenging from the numerical point of view, since these eigenvalues can be considered interior, and also because the linearized operator is available only in implicit form. We analyze the feasibility of different strategies for computing these modes, including matrix-free spectral transformation as well as harmonic projection methods.

MSC:

68W10 Parallel algorithms in computer science
65F99 Numerical linear algebra
65Y05 Parallel numerical computation
76F99 Turbulence
Full Text: DOI

References:

[1] Saad, Y.: Iterative methods for sparse linear systems, (2003) · Zbl 1031.65046
[2] Simoncini, V.; Szyld, D. B.: Flexible inner – outer Krylov subspace methods, SIAM journal on numerical analysis 40, No. 6, 2219-2239 (2003) · Zbl 1047.65021 · doi:10.1137/S0036142902401074
[3] Jenko, F.; Dorland, B.; Kotschenreuther, M.; Rogers, B.: Electron temperature gradient driven turbulence, Physics of plasmas 7, No. 5, 1904-1910 (2000)
[4] Dannert, T.; Jenko, F.: Gyrokinetic simulation of collisionless trapped-electron mode turbulence, Physics of plasmas 12, No. 7, 072309 (2005)
[5] Hernandez, V.; Roman, J. E.; Vidal, V.: Slepc: a scalable and flexible toolkit for the solution of eigenvalue problems, ACM transactions on mathematical software 31, No. 3, 351-362 (2005) · Zbl 1136.65315 · doi:10.1145/1089014.1089019
[6] F. Merz, Gyrokinetic simulation of multimode plasma turbulence, Ph.D. Thesis, Universität Münster, 2008.
[7] Kammerer, M.; Merz, F.; Jenko, F.: Exceptional points in linear gyrokinetics, Physics of plasmas 15, No. 5, 052102 (2008)
[8] V. Hernandez, J.E. Roman, A. Tomas, V. Vidal, A survey of software for sparse eigenvalue problems, Technical Report STR-6, Universidad Politécnica de Valencia, available at <http://www.grycap.upv.es/slepc>, 2007.
[9] Lehoucq, R. B.; Sorensen, D. C.; Yang, C.: ARPACK users’, guide solution of large-scale eigenvalue problems by implicitly restarted arnoldi methods, (1998) · Zbl 0901.65021
[10] Baker, C. G.; Hetmaniuk, U. L.; Lehoucq, R. B.; Thornquist, H. K.: Anasazi software for the numerical solution of large-scale eigenvalue problems, ACM transactions on mathematical software 36, No. 3, 13:1-13:23 (2009) · Zbl 1364.65083
[11] S. Balay, K. Buschelman, V. Eijkhout, W.D. Gropp, D. Kaushik, M. Knepley, L.C. McInnes, B.F. Smith, H. Zhang, PETSc users manual, Technical Report ANL-95/11 – Revision 2.3.3, Argonne National Laboratory, 2007.
[12] , Templates for the solution of algebraic eigenvalue problems: A practical guide (2000) · Zbl 0965.65058 · doi:10.1137/1.9780898719581
[13] Stewart, G. W.: Matrix algorithms, Eigensystems 2 (2001) · Zbl 0984.65031
[14] Stewart, G. W.: A Krylov – Schur algorithm for large eigenproblems, SIAM journal on matrix analysis and applications 23, No. 3, 601-614 (2001) · Zbl 1003.65045
[15] Hernandez, V.; Roman, J. E.; Tomas, A.: Parallel arnoldi eigensolvers with enhanced scalability via global communications rearrangement, Parallel computing 33, No. 7 – 8, 521-540 (2007)
[16] Ericsson, T.; Ruhe, A.: The spectral transformation Lanczos method for the numerical solution of large sparse generalized symmetric eigenvalue problems, Mathematics of computation 35, No. 152, 1251-1268 (1980) · Zbl 0468.65021
[17] Scott, D. S.: The advantages of inverted operators in Rayleigh – Ritz approximations, SIAM journal on scientific and statistical computing 3, No. 1, 68-75 (1982) · Zbl 0477.65027 · doi:10.1137/0903006
[18] Nour-Omid, B.; Parlett, B. N.; Ericsson, T.; Jensen, P. S.: How to implement the spectral transformation, Mathematics of computation 48, No. 178, 663-673 (1987) · Zbl 0638.65026 · doi:10.2307/2007835
[19] Grimes, R. G.; Lewis, J. G.; Simon, H. D.: A shifted block Lanczos algorithm for solving sparse symmetric generalized eigenproblems, SIAM journal on matrix analysis and applications 15, No. 1, 228-272 (1994) · Zbl 0803.65044 · doi:10.1137/S0895479888151111
[20] Zhang, H.; Smith, B.; Sternberg, M.; Zapol, P.: Sips: shift-and-invert parallel spectral transformations, ACM transactions on mathematical software 33, No. 2, 1-19 (2007) · Zbl 1365.65098
[21] Parlett, B. N.; Saad, Y.: Complex shift and invert strategies for real matrices, Linear algebra and its applications 88/89, 575-595 (1987) · Zbl 0623.65045 · doi:10.1016/0024-3795(87)90126-1
[22] Kooper, M. N.; Van Der Vorst, H. A.; Poedts, S.; Goedbloed, J. P.: Application of the implicitly updated arnoldi method with a complex shift-and-invert strategy in MHD, Journal of computational physics 118, No. 2, 320-328 (1995) · Zbl 0822.76070 · doi:10.1006/jcph.1995.1102
[23] Hetmaniuk, U. L.; Lehoucq, R. B.: Uniform accuracy of eigenpairs from a shift-invert Lanczos method, SIAM journal on matrix analysis and applications 28, No. 4, 927-948 (2006) · Zbl 1130.65053 · doi:10.1137/050629288
[24] Freitag, M. A.; Spence, A.: Convergence theory for inexact inverse iteration applied to the generalised nonsymmetric eigenproblem, Electronic transactions on numerical analysis 28, 40-64 (2007) · Zbl 1171.65025
[25] Meerbergen, K.; Spence, A.; Roose, D.: Shift – invert and Cayley transforms for detection of rightmost eigenvalues of nonsymmetric matrices, BIT numerical mathematics 34, No. 3, 409-423 (1994) · Zbl 0814.65037 · doi:10.1007/BF01935650
[26] Meerbergen, K.; Roose, D.: Matrix transformations for computing rightmost eigenvalues of large sparse non-symmetric eigenvalue problems, IMA journal of numerical analysis 16, No. 3, 297-346 (1996) · Zbl 0856.65033 · doi:10.1093/imanum/16.3.297
[27] Meerbergen, K.; Roose, D.: The restarted arnoldi method applied to iterative linear system solvers for the computation of rightmost eigenvalues, SIAM journal on matrix analysis and applications 18, No. 1, 1-20 (1997) · Zbl 0872.65038 · doi:10.1137/S0895479894274255
[28] Lehoucq, R. B.; Salinger, A. G.: Large-scale eigenvalue calculations for stability analysis of steady flows on massively parallel computers, International journal for numerical methods in fluids 36, 309-327 (2001) · Zbl 1037.76036 · doi:10.1002/fld.135
[29] Sleijpen, G. L. G.; Der Vorst, H. A. V.: A Jacobi – Davidson iteration method for linear eigenvalue problems, SIAM review 42, No. 2, 267-293 (2000) · Zbl 0949.65028 · doi:10.1137/S0036144599363084
[30] Morgan, R. B.: Preconditioning eigenvalues and some comparison of solvers, Journal of computational and applied mathematics 123, No. 1 – 2, 101-115 (2000) · Zbl 0979.65028 · doi:10.1016/S0377-0427(00)00395-2
[31] Morgan, R. B.: Computing interior eigenvalues of large matrices, Linear algebra and its applications 154 – 156, 289-309 (1991) · Zbl 0734.65029 · doi:10.1016/0024-3795(91)90381-6
[32] Paige, C. C.; Parlett, B. N.; Van Der Vorst, H. A.: Approximate solutions and eigenvalue bounds from Krylov subspaces, Numerical linear algebra with applications 2, No. 2, 115-133 (1995) · Zbl 0831.65036 · doi:10.1002/nla.1680020205
[33] Morgan, R. B.; Zeng, M.: Harmonic projection methods for large non-symmetric eigenvalue problems, Numerical linear algebra with applications 5, No. 1, 33-55 (1998) · Zbl 0937.65045 · doi:10.1002/(SICI)1099-1506(199801/02)5:1<33::AID-NLA125>3.0.CO;2-1
[34] Morgan, R. B.; Zeng, M.: A harmonic restarted arnoldi algorithm for calculating eigenvalues and determining multiplicity, Linear algebra and its applications 415, No. 1, 96-113 (2006) · Zbl 1088.65033 · doi:10.1016/j.laa.2005.07.024
[35] J.E. Roman, Practical implementation of harmonic Krylov – Schur, Technical Report STR-9, Universidad Politécnica de Valencia, available at &lt;http://www.grycap.upv.es/slepc&gt;, 2009.
[36] Jia, Z.: Refined iterative algorithms based on arnoldi’s process for large unsymmetric eigenproblems, Linear algebra and its applications 259, No. 1 – 3, 1-23 (1997) · Zbl 0877.65018 · doi:10.1016/S0024-3795(96)00238-8
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.