×

The global version of the gyrokinetic turbulence code GENE. (English) Zbl 1408.76592

Summary: The understanding and prediction of transport due to plasma microturbulence is a key open problem in modern plasma physics, and a grand challenge for fusion energy research. Ab initio simulations of such small-scale, low-frequency turbulence are to be based on the gyrokinetic equations, a set of nonlinear integro-differential equations in reduced (five-dimensional) phase space. In the present paper, the extension of the well-established and widely used gyrokinetic code GENE [F. Jenk, W. Dorland, M. Kotschenreuther and B. N. Rogers, Electron temperature gradient driven turbulence, Phys. Plasmas 7, 1904–1910 (2000)] from a radially local to a radially global (nonlocal) version is described. The necessary modifications of both the basic equations and the employed numerical methods are detailed, including, e.g., the change from spectral methods to finite difference and interpolation techniques in the radial direction and the implementation of sources and sinks. In addition, code verification studies and benchmarks are presented.

MSC:

76X05 Ionized gas flow in electromagnetic fields; plasmic flow
76F99 Turbulence
76M25 Other numerical methods (fluid mechanics) (MSC2010)
82D10 Statistical mechanics of plasmas

References:

[1] Brizard, A. J.; Hahm, T. S., Foundations of nonlinear gyrokinetic theory, Rev. Mod. Phys., 79, 421 (2007) · Zbl 1205.76309
[2] Garbet, X.; Idomura, Y.; Villard, L.; Watanabe, T. H., TOPICAL REVIEW: Gyrokinetic simulations of turbulent transport, Nucl. Fusion, 50, 043002 (2010)
[3] F. Jenko, The GENE development team,The GENE code, <http://www.gene.rzg.mpg.de>; F. Jenko, The GENE development team,The GENE code, <http://www.gene.rzg.mpg.de>
[4] Jenko, F.; Dorland, W.; Kotschenreuther, M.; Rogers, B. N., Electron temperature gradient driven turbulence, Phys. Plasmas, 7, 1904-1910 (2000)
[5] Dannert, T.; Jenko, F., Gyrokinetic simulation of collisionless trapped-electron mode turbulence, Phys. Plasmas, 12, 072309 (2005)
[6] T. Dannert, Gyrokinetische Simulation von Plasmaturbulenz mit gefangenen Teilchen und elektromagnetischen Effekten, Ph.D. Thesis, Technische Universität München, 2005.; T. Dannert, Gyrokinetische Simulation von Plasmaturbulenz mit gefangenen Teilchen und elektromagnetischen Effekten, Ph.D. Thesis, Technische Universität München, 2005.
[7] Lederer, H.; Hatzky, R.; Tisma, R.; Bottino, A.; Jenko, F., Hyperscaling of plasma turbulence simulations in deisa, CLADE ’07: Proceedings of the Fifth IEEE workshop on Challenges of large applications in distributed environments (2007), ACM: ACM New York, NY, USA, pp. 19-26
[8] F. Merz, Gyrokinetic simulation of multimode plasma turbulence, Ph.D. Thesis, Westfälische Wilhelms-Universität Münster, 2008.; F. Merz, Gyrokinetic simulation of multimode plasma turbulence, Ph.D. Thesis, Westfälische Wilhelms-Universität Münster, 2008.
[9] M.J. Pueschel, Electromagnetic effects in gyrokinetic simulations of plasma turbulence, Ph.D. Thesis, Westfälische Wilhelms-Universität Münster, 2009.; M.J. Pueschel, Electromagnetic effects in gyrokinetic simulations of plasma turbulence, Ph.D. Thesis, Westfälische Wilhelms-Universität Münster, 2009.
[10] Lederer, H.; Tisma, R.; Hatzky, R.; Bottino, A.; Jenko, F., Petascaling of plasma turbulence codes, parallel computing: architectures , algorithms and applications, Advances in Parallel Computing, 15, 713 (2008)
[11] Sarazin, Y.; Garbet, X.; Ghendrih, P.; Benkadda, S., Transport due to front propagation in tokamaks, Phys. Plasmas, 7, 1085-1088 (2000)
[12] Candy, J.; Waltz, R. E., An Eulerian gyrokinetic-Maxwell solver, J. Comput. Phys., 186, 545-581 (2003) · Zbl 1072.82554
[13] McMillan, B. F.; Jolliet, S.; Tran, T. M.; Villard, L.; Bottino, A.; Angelino, P., Avalanchelike bursts in global gyrokinetic simulations, Phys. Plasmas, 16, 022310 (2009)
[14] Dif-Pradalier, G.; Diamond, P. H.; Grandgirard, V.; Sarazin, Y.; Abiteboul, J.; Garbet, X.; Ghendrih, P.; Strugarek, A.; Ku, S.; Chang, C. S., On the validity of the local diffusive paradigm in turbulent plasma transport, Phys. Rev. E, 82, 025401-+ (2010)
[15] T. Görler, Multiscale effects in plasma microturbulence, Ph.D. Thesis, Universität Ulm, 2009.; T. Görler, Multiscale effects in plasma microturbulence, Ph.D. Thesis, Universität Ulm, 2009.
[16] X. Lapillonne, Microturbulence in electron internal transport barriers in the tcv tokamak and global effects, Ph.D. Thesis, École Polytechnique Fédérale de Lausanne , 2010.; X. Lapillonne, Microturbulence in electron internal transport barriers in the tcv tokamak and global effects, Ph.D. Thesis, École Polytechnique Fédérale de Lausanne , 2010.
[17] Candy, J.; Waltz, R. E.; Parker, S. E.; Chen, Y., Relevance of the parallel nonlinearity in gyrokinetic simulations of tokamak plasmas, Phys. Plasmas, 13, 074501 (2006)
[18] Idomura, Y.; Ida, M.; Tokuda, S.; Villard, L., New conservative gyrokinetic full-\(f\) Vlasov code and its comparison to gyrokinetic δf particle-in-cell code, J. Comput. Phys., 226, 244-262 (2007) · Zbl 1136.82037
[19] S. Jolliet, Gyrokinetic particle-in-cell global simulations of ion-temperature-gradient and collisionless-trapped-electron-mode turbulence in tokamaks, Ph.D. Thesis no. 4326, Ph.D. Thesis, Ecole Polytechnique Fédérale de Lausanne, 2009.; S. Jolliet, Gyrokinetic particle-in-cell global simulations of ion-temperature-gradient and collisionless-trapped-electron-mode turbulence in tokamaks, Ph.D. Thesis no. 4326, Ph.D. Thesis, Ecole Polytechnique Fédérale de Lausanne, 2009.
[20] Lapillonne, X.; Brunner, S.; Dannert, T.; Jolliet, S.; Marinoni, A.; Villard, L.; Görler, T.; Jenko, F.; Merz, F., Clarifications to the limitations of the s-alpha equilibrium model for gyrokinetic computations of turbulence, Phys. Plasmas, 16, 032308 (2009)
[21] Jolliet, S.; Bottino, A.; Angelino, P.; Hatzky, R.; Tran, T.; McMillan, B.; Sauter, O.; Appert, K.; Idomura, Y.; Villard, L., A global collisionless PIC code in magnetic coordinates, Comput. Phys. Commun., 177, 409-425 (2007)
[22] Lapillonne, X.; McMillan, B. F.; Görler, T.; Brunner, S.; Dannert, T.; Jenko, F.; Merz, F.; Villard, L., Nonlinear quasisteady state benchmark of global gyrokinetic codes, Phys. Plasmas, 17, 112321 (2010)
[23] Littlejohn, R. G., Hamiltonian formulation of guiding center motion, Phys. Fluids, 24, 1730-1749 (1981) · Zbl 0473.76123
[24] D’haeseleer, W. D.; Hitchon, W. N.G.; Callen, J. D.; Shohet, J. L., Flux Coordinates and Magnetic Field Structure. Flux Coordinates and Magnetic Field Structure, A Guide to a Fundamental Tool of Plasma Theory (1991), Springer-Verlag: Springer-Verlag New York · Zbl 0989.76500
[25] J.C.Cummings, Gyrokinetic simulation of finite-beta and self-generated sheared-flow effects on pressure-gradient-driven instabilities, Ph.D. Thesis, Princeton University, Princeton, 1995.; J.C.Cummings, Gyrokinetic simulation of finite-beta and self-generated sheared-flow effects on pressure-gradient-driven instabilities, Ph.D. Thesis, Princeton University, Princeton, 1995.
[26] Huba, J. D., NRL (Naval Research Laboratory) plasma formulary (2007)
[27] McMillan, B. F.; Jolliet, S.; Tran, T. M.; Villard, L.; Bottino, A.; Angelino, P., Long global gyrokinetic simulations: source terms and particle noise control, Phys. Plasmas, 15, 052308 (2008)
[28] Sarazin, Y.; Grandgirard, V.; Abiteboul, J.; Allfrey, S.; Garbet, X.; Ghendrih, P.; Latu, G.; Strugarek, A.; Dif-Pradalier, G., Large scale dynamics in flux driven gyrokinetic turbulence, Nucl. Fusion, 50, 054004 (2010)
[29] Grandgirard, V.; Sarazin, Y.; Angelino, P.; Bottino, A.; Crouseilles, N.; Darmet, G.; Dif-Pradalier, G.; Garbet, X.; Ghendrih, P.; Jolliet, S.; Latu, G.; Sonnendrücker, E.; Villard, L., Global full-f gyrokinetic simulations of plasma turbulence, Plasma Phys. Control. Fusion, 49, B173 (2007)
[30] V. Shafranov, in: Reviews of Plasma Physics, M.A. Leontovich, Consultants Bureau, New York, vol. 1, 1966, p. 1.; V. Shafranov, in: Reviews of Plasma Physics, M.A. Leontovich, Consultants Bureau, New York, vol. 1, 1966, p. 1.
[31] Lütjens, H.; Bondeson, A.; Sauter, O., Comput. Phys. Comm., 97, 219 (1996) · Zbl 0922.76240
[32] Xanthopoulos, P.; Jenko, F., Clebsch-type coordinates for nonlinear gyrokinetics in generic toroidal configurations, Phys. Plasmas, 13, 092301 (2006)
[33] Schiesser, W. E., The Numerical Method of Lines: Integration of Partial Differential Equations (1991), Academic Press: Academic Press New York · Zbl 0763.65076
[34] Hernandez, V.; Roman, J. E.; Vidal, V., SLEPc: a scalable and flexible toolkit for the solution of eigenvalue problems, ACM Transactions on Mathematical Software, 31, 351-362 (2005) · Zbl 1136.65315
[35] V. Hernandez, J.E. Roman, E. Romero, A. Tomas, V. Vidal, SLEPc home page <; V. Hernandez, J.E. Roman, E. Romero, A. Tomas, V. Vidal, SLEPc home page <
[36] S. Balay, K. Buschelman, W.D. Gropp, D. Kaushik, M.G. Knepley, L.C. McInnes, B.F. Smith, H. Zhang, PETSc Web page <http://www.mcs.anl.gov/petsc>; S. Balay, K. Buschelman, W.D. Gropp, D. Kaushik, M.G. Knepley, L.C. McInnes, B.F. Smith, H. Zhang, PETSc Web page <http://www.mcs.anl.gov/petsc>
[37] S. Balay, K. Buschelman, V. Eijkhout, W.D. Gropp, D. Kaushik, M.G. Knepley, L.C. McInnes, B.F. Smith, H. Zhang, PETSc users manual, Tech. Rep. ANL-95/11 - Revision 2.1.5, Argonne National Laboratory, 2004.; S. Balay, K. Buschelman, V. Eijkhout, W.D. Gropp, D. Kaushik, M.G. Knepley, L.C. McInnes, B.F. Smith, H. Zhang, PETSc users manual, Tech. Rep. ANL-95/11 - Revision 2.1.5, Argonne National Laboratory, 2004.
[38] Balay, S.; Gropp, W. D.; McInnes, L. C.; Smith, B. F., Efficient management of parallelism in object oriented numerical software libraries, (Arge, E.; Bruaset, A. M.; Langtangen, H. P., Modern Software Tools in Scientific Computing (1997), Birkhäuser Press), 163-202 · Zbl 0882.65154
[39] Mead, J. L.; Renaut, R. A., Optimal Runge-Kutta methods for first order pseudospectral operators, J. Comput. Phys., 152, 404-419 (1999) · Zbl 0935.65100
[40] Roberts, K. V.; Taylor, J. B., Gravitational resistive instability of an incompressible plasma in a sheared magnetic field, Phys. Fluids, 8, 315-322 (1965)
[41] Cowley, S. C.; Kulsrud, R. M.; Sudan, R., Considerations of ion-temperature-gradient-driven turbulence, Phys. Fluids B, 3, 2767-2782 (1991)
[42] Beer, M. A.; Cowley, S. C.; Hammett, G. W., Field-aligned coordinates for nonlinear simulations of tokamak turbulence, Phys. Plasmas, 2, 2687-2700 (1995)
[43] Scott, B., Global consistency for thin flux tube treatments of toroidal geometry, Phys. Plasmas, 5, 2334-2339 (1998)
[44] Arakawa, A., Computational design for long-term numerical integration of the equations of fluid motion: two-dimensional incompressible flow. Part I, J. Comput. Phys., 1, 119-143 (1966) · Zbl 0147.44202
[45] Press, W. H.; Flannery, B. P.; Vetterling, W. T.; Teukolsky, S. A., Numerical Recipes in Pascal: The Art of Scientific Computing (1989), Cambridge University Press: Cambridge University Press Cambridge · Zbl 0698.65001
[46] Candy, J.; Waltz, R. E.; Dorland, W., The local limit of global gyrokinetic simulations, Phys. Plasmas, 11, L25-L28 (2004)
[47] Villard, L.; Bottino, A.; Brunner, S.; Casati, A.; Chowdhury, J.; Dannert, T.; Ganesh, R.; Garbet, X.; Görler, T.; Grandgirard, V.; Hatzky, R.; Idomura, Y.; Jenko, F.; Jolliet, S.; Khosh Aghdam, S.; Lapillonne, X.; Latu, G.; McMillan, B. F.; Merz, F.; Sarazin, Y.; Tran, T. M.; Vernay, T., Gyrokinetic simulations of turbulent transport: size scaling and chaotic behaviour, Plasma Phys. Control. Fusion, 52, 124038 (2010)
[48] Dimits, A. M.; Bateman, G.; Beer, M. A.; Cohen, B. I.; Dorland, W.; Hammett, G. W.; Kim, C.; Kinsey, J. E.; Kotschenreuther, M.; Kritz, A. H.; Lao, L. L.; Mandrekas, J.; Nevins, W. M.; Parker, S. E.; Redd, A. J.; Shumaker, D. E.; Sydora, R.; Weiland, J., Comparisons and physics basis of tokamak transport models and turbulence simulations, Phys. Plasmas, 7, 969-983 (2000)
[49] Winsor, N.; Johnson, J. L.; Dawson, J. M., Geodesic acoustic waves in hydromagnetic systems, Phys. Fluids, 11, 2448-2450 (1968)
[50] Rosenbluth, M. N.; Hinton, F. L., Poloidal flow driven by ion-temperature-gradient turbulence in Tokamaks, Phys. Rev. Lett., 80, 724-727 (1998)
[51] Hinton, F. L.; Rosenbluth, M. N., Dynamics of axisymmetric and poloidal flows in tokamaks, Plasma Phys. Control. Fusion, 41, A653-A662 (1999)
[52] Sugama, H.; Watanabe, T.-H., Collisionless damping of geodesic acoustic modes, J. Plasma Phys., 72, 825 (2006)
[53] Fivaz, M.; Brunner, S.; de Ridder, G.; Sauter, O.; Tran, T. M.; Vaclavik, J.; Villard, L.; Appert, K., Finite element approach to global gyrokinetic particle-in-cell simulations using magnetic coordinates, Comput. Phys. Commun., 111, 27-47 (1998) · Zbl 0944.76035
[54] Villard, L., private communication (2009)
[55] Falchetto, G. L.; Scott, B. D.; Angelino, P.; Bottino, A.; Dannert, T.; Grandgirard, V.; Janhunen, S.; Jenko, F.; Jolliet, S.; Kendl, A.; McMillan, B. F.; Naulin, V.; Nielsen, A. H.; Ottaviani, M.; Peeters, A. G.; Pueschel, M. J.; Reiser, D.; Ribeiro, T. T.; Romanelli, M., The European turbulence code benchmarking effort: turbulence driven by thermal gradients in magnetically confined plasmas, Plasma Phys. Control. Fusion, 50, 124015 (2008)
[56] Grandgirard, V.; Sarazin, Y.; Garbet, X.; Dif-Pradalier, G.; Ghendrih, P.; Crouseilles, N.; Latu, G.; Sonnendrücker, E.; Besse, N.; Bertrand, P., Computing ITG turbulence with a full-f semi-Lagrangian code, Commun. Nonlinear Sci. Numer. Simul., 13, 81-87 (2008) · Zbl 1129.35462
[57] Heikkinen, J. A.; Janhunen, S. J.; Kiviniemi, T. P.; Ogando, F., Full f gyrokinetic method for particle simulation of tokamak transport, J. Comput. Phys., 227, 5582-5609 (2008) · Zbl 1220.76079
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.