×

Mitigating model error via a multimodel method and application to tropical intraseasonal oscillations. (English) Zbl 07773359

Summary: Developing a model to capture all aspects of a complex dynamical system is an immense task, and each model will have deficiencies in some areas, such as global climate models having difficulty in capturing tropical intraseasonal variability such as the Madden-Julian oscillation. Besides complex models, it is possible to create simplified, low-dimensional models to capture specific phenomena while ignoring many aspects of the full system. Here, we propose a strategy to allow complex models to communicate with simplified models throughout a simulation. The communication allows one to leverage the strengths of each model, without needing to change their dynamics, to mitigate model error. Furthermore, to ensure ease of implementation in complex systems, the strategy is based on common data assimilation techniques that are normally used to combine models and real-world data. This strategy is investigated here in a test case that is nonlinear, non-Gaussian, and high-dimensional (approximately \(10^5\) degrees of freedom), and the multiple models have different state spaces. In particular, it is an idealized tropical climate model in three spatial dimensions. The multimodel communication strategy is seen to mitigate model error and reproduce statistical features akin to those of the truth model when the communication is sufficiently frequent. In these tests, the low-dimensional model contributes only two degrees of freedom, which suggests that, in some systems, large amounts of model error can possibly be reduced by focusing on a small set of model components.

MSC:

68Q25 Analysis of algorithms and problem complexity
68R10 Graph theory (including graph drawing) in computer science
68U05 Computer graphics; computational geometry (digital and algorithmic aspects)

Software:

CRCP
Full Text: DOI

References:

[1] Anderson, J., Hoar, T., Raeder, K., Liu, H., Collins, N., Torn, R., and Avellano, A., The data assimilation research testbed: A community facility, Bull. Amer. Meteorol. Soc., 90 (2009), pp. 1283-1296.
[2] Arbabi, H. and Mezic, I., Ergodic theory, dynamic mode decomposition, and computation of spectral properties of the Koopman operator, SIAM J. Appl. Dyn. Syst., 16 (2017), pp. 2096-2126. · Zbl 1381.37096
[3] Aubry, N., Guyonnet, R., and Lima, R., Spatiotemporal analysis of complex signals: Theory and applications, J. Stat. Phys., 64 (1991), pp. 683-739. · Zbl 0943.37510
[4] Benedict, J., Maloney, E., Sobel, A., Frierson, D., and Donner, L., Tropical intraseasonal variability in version 3 of the GFDL atmosphere model, J. Climate, 26 (2013), pp. 426-449, doi:10.1175/JCLI-D-12-00103.1.
[5] Berry, T., Cressman, J. R., Greguric-Ferencek, Z., and Sauer, T., Time-scale separation from diffusion-mapped delay coordinates, SIAM J. Appl. Dyn. Syst., 12 (2013), pp. 618-649. · Zbl 1291.37101
[6] Bjoörnsson, H. and Venegas, S., A Manual for EOF and SVD Analyses of Climatic Data, http://www.geog.mcgill.ca/gec3/wp-content/uploads/2009/03/Report-no.-1997-1.pdf, 1997.
[7] Branicki, M. and Majda, A. J., An information-theoretic framework for improving imperfect dynamical predictions via multi-model ensemble forecasts, J. Nonlinear Sci., 25 (2015), pp. 489-538. · Zbl 1342.94056
[8] Chen, N., Li, Y., and Liu, H., Conditional Gaussian nonlinear system: A fast preconditioner and a cheap surrogate model for complex nonlinear systems, Chaos, 32 (2022), 053122. · Zbl 1540.76162
[9] Chen, N., Majda, A., and Giannakis, D., Predicting the cloud patterns of the Madden-Julian oscillation through a low-order nonlinear stochastic model, Geophys. Res. Lett., 41 (2014), pp. 5612-5619, doi:10.1002/2014GL060876.
[10] Chen, Y. and Stechmann, S. N., Multi-model communication and data assimilation for mitigating model error and improving forecasts, Chinese Ann. Math. Ser. B, 40 (2019), pp. 689-720, doi:10.1007/s11401-019-0157-1. · Zbl 1505.60061
[11] Cutler, M., Walsh, T., and How, J., Reinforcement learning with multi-fidelity simulators, in Proceedings of the International Conference on Robotics and Automation, , IEEE, 2014, pp. 3888-3895, doi:10.1109/ICRA.2014.6907423.
[12] Duane, G., Tribbia, J., and Weiss, J., Synchronicity in predictive modelling: A new view of data assimilation, Nonlinear Process. Geophys., 13 (2006), pp. 601-612, doi:10.5194/npg-13-601-2006.
[13] Duane, G., Wiegerinck, W., Selten, F., Shen, M., and Keenlyside, N., Supermodeling: Synchronization of alternative dynamical models of a single objective process, in Advances in Nonlinear Geosciences, Springer, New York, 2017, pp. 101-121, doi:10.1007/978-3-319-58895-7_5.
[14] Giannakis, D., Dynamics-adapted cone kernels, SIAM J. Appl. Dyn. Syst., 14 (2015), pp. 556-608. · Zbl 1370.37141
[15] Giannakis, D., Data-driven spectral decomposition and forecasting of ergodic dynamical systems, Appl. Comput. Harmon. Anal., 47 (2019), pp. 338-396. · Zbl 1420.37113
[16] Giannakis, D. and Majda, A. J., Limits of predictability in the North Pacific sector of a comprehensive climate model, Geophys. Res. Lett., 39 (2012).
[17] Giannakis, D. and Majda, A. J., Nonlinear Laplacian spectral analysis for time series with intermittency and low-frequency variability, Proc. Natl. Acad. Sci. USA, 109 (2012), pp. 2222-2227. · Zbl 1256.62053
[18] Giannakis, D. and Majda, A. J., Quantifying the predictive skill in long-range forecasting. Part I: Coarse-grained predictions in a simple ocean model, J. Climate, 25 (2012), pp. 1793-1813.
[19] Giannakis, D. and Majda, A. J., Quantifying the predictive skill in long-range forecasting. Part II: Model error in coarse-grained Markov models with application to ocean-circulation regimes, J. Climate, 25 (2012), pp. 1814-1826.
[20] Gottwald, G. A. and Reich, S., Supervised learning from noisy observations: Combining machine-learning techniques with data assimilation, Phys. D, 423 (2021), 132911. · Zbl 1508.68288
[21] Grabowski, W. W. and Smolarkiewicz, P. K., CRCP: A cloud resolving convection parameterization for modeling the tropical convecting atmosphere, Phys. D, 133 (1999), pp. 171-178. · Zbl 1194.86006
[22] Gregory, W., Bushuk, M., Adcroft, A., Zhang, Y., and Zanna, L., Deep Learning of Systematic Sea Ice Model Errors From Data Assimilation Increments, preprint, arXiv:2304.03832, 2023.
[23] Hagedorn, R., Doblas-Reyes, F. J., and Palmer, T., The rationale behind the success of multi-model ensembles in seasonal forecasting—I. Basic concept, Tellus A, 57 (2005), pp. 219-233.
[24] Hannah, W., Jones, C., Hillman, B., Norman, M., Bader, D., Taylor, M., Leung, L., Pritchard, M., Branson, M., Lin, G., Pressel, K., and Lee, J., Initial results from the super-parametrized E3SM, J. Adv. Model. Earth Syst., 12 (2020), pp. 1-19, doi:10.1029/2019MS001863.
[25] Harlim, J., Jiang, S. W., Liang, S., and Yang, H., Machine learning for prediction with missing dynamics, J. Comput. Phys., 428 (2021), 109922. · Zbl 07511409
[26] Kalnay, E., Atmospheric Modeling, Data Assimilation and Predictability, Cambridge University Press, Cambridge, UK, 2003.
[27] Kamb, M., Kaiser, E., Brunton, S. L., and Kutz, J. N., Time-delay observables for Koopman: Theory and applications, SIAM J. Appl. Dyn. Syst., 19 (2020), pp. 886-917. · Zbl 1441.37090
[28] Kashinath, K., Mustafa, M., Albert, A., Wu, J., Jiang, C., Esmaeilzadeh, S., Azizzadenesheli, K., Wang, R., Chattopadhyay, A., Singh, A., et al., Physics-informed machine learning: Case studies for weather and climate modelling, Philos. Trans. Roy. Soc. A, 379 (2021), 20200093.
[29] Kessler, W., EOF representations of the Madden-Julian oscillation and its connection with ENSO, J. Climate, 14 (2001), pp. 3055-3061, doi:10.1175/1520-0442(2001)014<3055:EROTMJ>2.0.CO;2.
[30] Kharin, V. V. and Zwiers, F. W., Climate predictions with multimodel ensembles, J. Climate, 15 (2002), pp. 793-799.
[31] Khouider, B. and Majda, A. J., A simple multicloud parameterization for convectively coupled tropical waves. Part II: Nonlinear simulations, J. Atmos. Sci., 64 (2007), pp. 381-400.
[32] Kiladis, G., Wheeler, M., Haertel, P., Straub, K., and Roundy, P., Convectively coupled equatorial waves, Rev. Geophys., 47 (2009), pp. 1-42, doi:10.1029/2008RG000266.
[33] Kim, D., Sobel, A., Maloney, E., Frierson, D., and Kang, I., A systematic relationship between intraseasonal variability and mean state bias in AGCM simulations, J. Climate, 24 (2011), pp. 5506-5520, doi:10.1175/2011JCLI4177.1.
[34] Krishnamurti, T., Kishtawal, C., LaRow, T., Bachiochi, D., Zhang, Z., Williford, C., Gadgil, S., and Surendran, S., Improved weather and seasonal climate forecasts from multimodel superensemble, Science, 285 (1999), pp. 1548-1550, doi:10.1126/science.285.5433.1548.
[35] Krishnamurti, T., Kumar, V., Simon, A., Bhardwaj, A., Ghosh, T., and Ross, R., A review of multimodel superensemble forecasting for weather, seasonal climate, and hurricanes, Rev. Geophys., 54 (2016), pp. 336-377, doi:10.1002/2015RG000513.
[36] Law, K., Stuart, A., and Zygalakis, K., Data Assimilation: A Mathematical Introduction, Springer, New York, 2015. · Zbl 1353.60002
[37] Levine, M. and Stuart, A., A framework for machine learning of model error in dynamical systems, Comm. Amer. Math. Soc., 2 (2022), pp. 283-344. · Zbl 1542.68172
[38] Li, Y. and Stechmann, S. N., Predictability of tropical rainfall and waves: Estimates from observational data, Quart. J. Roy. Meteorol. Soc., 146 (2020), pp. 1668-1684.
[39] Majda, A., Introduction to PDEs and Waves for the Atmosphere and Ocean, AMS, Providence, RI, 2003. · Zbl 1278.76004
[40] Majda, A. and Harlim, J., Filtering Complex Turbulent Systems, Cambridge University Press, Cambridge, UK, 2012. · Zbl 1250.93002
[41] Majda, A. J. and Qi, D., Strategies for reduced-order models for predicting the statistical responses and uncertainty quantification in complex turbulent dynamical systems, SIAM Rev., 60 (2018), pp. 491-549. · Zbl 1393.76041
[42] Majda, A. J. and Stechmann, S. N., The skeleton of tropical intraseasonal oscillations, Proc. Natl. Acad. Sci. USA, 106 (2009), pp. 8417-8422.
[43] Mapes, B. E. and Bacmeister, J. T., Diagnosis of tropical biases and the MJO from patterns in the MERRA analysis tendency fields, J. Climate, 25 (2012), pp. 6202-6214.
[44] Nerger, L., Tang, Q., and Mu, L., Efficient ensemble data assimilation for coupled models with the parallel data assimilation framework: Example of AWI-CM (AWI-CM-PDAF1.0), Geosci. Model Dev., 13 (2020), pp. 4305-4321.
[45] Ogrosky, H. R. and Stechmann, S. N., Identifying convectively coupled equatorial waves using theoretical wave eigenvectors, Monthly Weather Rev., 144 (2016), pp. 2235-2264.
[46] Ogrosky, H. R., Stechmann, S. N., Chen, N., and Majda, A. J., Singular spectrum analysis with conditional predictions for real-time state estimation and forecasting, Geophys. Res. Lett., 46 (2019), pp. 1851-1860.
[47] Ogrosky, H. R., Stechmann, S. N., and Hottovy, S., Instability and nonlinear dynamics of the MJO in a tropical channel model with vertically varying convective adjustment, Theor. Comput. Fluid Dyn., 33 (2019), pp. 307-323, doi:10.1007/s00162-019-00495-x.
[48] Pecora, L. and Carroll, T., Synchronization in chaotic systems, Phys. Rev. Lett., 64 (1990), pp. 821-825, doi:10.1103/PhysRevLett.64.821. · Zbl 0938.37019
[49] Peherstorfer, B., Willcox, K., and Gunzburger, M., Survey of multifidelity methods in uncertainty propagation, inference, and optimization, SIAM Rev., 60 (2018), pp. 550-591. · Zbl 1458.65003
[50] Peleg, M. and Normand, M., Modeling of fungal and bacterial spore germination under static and dynamics conditions, Appl. Environ. Microbiol., 79 (2013), pp. 6765-6775, doi:10.1128/AEM.02521-13.
[51] Pokorný, P., Vokrouhlický, D., Nesvorný, D., Campbell-Brown, M., and Brown, P., Dynamical model for the toroidal sporadic meteors, Astrophys. J., 789 (2014), pp. 1-20, doi:10.1088/0004-637X/789/1/25.
[52] Qi, D. and Majda, A. J., Using machine learning to predict extreme events in complex systems, Proc. Natl. Acad. Sci. USA, 117 (2020), pp. 52-59. · Zbl 1456.68176
[53] Randall, D., Khairoutdinov, M., Arakawa, A., and Grabowski, W., Breaking the cloud parameterization deadlock, Bull. Amer. Meteorol. Soc., 84 (2003), pp. 1547-1564.
[54] Ranftl, S., Melito, G., Badeli, V., Reinbacher-Köstinger, A., Ellermann, K., and von der Linden, W., Bayesian uncertainty quanitification with multi-fildelity data and Gaussian processes for impedeance cardiography of aortic dissection, Entropy, 22 (2019), pp. 1-14, doi:10.3390/e22010058.
[55] Reich, S. and Cotter, C., Probabilistic Forecasting and Bayesian Data Assimilation, Cambridge University Press, Cambridge, UK, 2015. · Zbl 1314.62005
[56] Robinson, T., Willcox, K., Eldred, M., and Haimes, R., Multifidelity optimization for variable-complexity design, in Proceedings of the 11th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference, , American Institute of Aeronautics and Astronautics, 2006, pp. 1-18, doi:10.2514/6.2006-7114.
[57] Rodwell, M. and Palmer, T., Using numerical weather prediction to assess climate models, Quart. J. Roy. Meteorol. Soc., 133 (2007), pp. 129-146.
[58] Rudy, S., Alla, A., Brunton, S. L., and Kutz, J. N., Data-driven identification of parametric partial differential equations, SIAM J. Appl. Dyn. Syst., 18 (2019), pp. 643-660. · Zbl 1456.65096
[59] Schaeffer, H., Tran, G., and Ward, R., Extracting sparse high-dimensional dynamics from limited data, SIAM J. Appl. Math., 78 (2018), pp. 3279-3295. · Zbl 1405.62127
[60] Schneider, T., Lan, S., Stuart, A., and Teixeira, J., Earth system modeling 2.0: A blueprint for models that learn from observations and targeted high-resolution simulations, Geophys. Res. Lett., 44 (2017), pp. 12-396.
[61] Schneider, T., Stuart, A. M., and Wu, J.-L., Learning stochastic closures using ensemble Kalman inversion, Trans. Math. Appl., 5 (2021), tnab003. · Zbl 1478.60129
[62] Shen, M., Keenlyside, N., Selten, F., Wiegerinck, W., and Duane, G., Dynamically combining climate models to ‘supermodel’ the tropical Pacific, Geophys. Res. Lett., 43 (2016), pp. 359-366, doi:10.1002/2015GL066562.
[63] Stachnik, J. P., Waliser, D. E., Majda, A. J., Stechmann, S. N., and Thual, S., Evaluating mjo event initiation and decay in the skeleton model using an rmm-like index, J. Geophys. Res. Atmos., 120 (2015), pp. 11-486.
[64] Stechmann, S. N., Multiscale eddy simulation for moist atmospheric convection: Preliminary investigation, J. Comput. Phys., 271 (2014), pp. 99-117. · Zbl 1349.86042
[65] Stechmann, S. N. and Hottovy, S., Unified spectrum of tropical rainfall and waves in simple stochastic model, Geophys. Res. Lett., 44 (2017), pp. 10713-10724, doi:10.1002/2017GL075754.
[66] Stechmann, S. N. and Majda, A. J., Identifying the skeleton of the Madden-Julian oscillation in observational data, Monthly Weather Rev., 143 (2015), pp. 395-416.
[67] Stechmann, S. N., Majda, A. J., and Khouider, B., Nonlinear dynamics of hydrostatic internal gravity waves, Theor. Comput. Fluid Dyn., 22 (2008), pp. 407-432, doi:10.1007/s00162-008-0080-7. · Zbl 1161.76444
[68] Thual, S., Majda, A. J., Chen, N., and Stechmann, S. N., Simple stochastic model for el niño with westerly wind bursts, Proc. Natl. Acad. Sci. USA, 113 (2016), pp. 10245-10250. · Zbl 1355.86005
[69] Tong, X., Majda, A., and Kelly, D., Nonlinear stability and ergodicity of ensemble based Kalman filters, Nonlinearity, 29 (2016), pp. 657-691, doi:10.1088/0951-7715/29/2/657. · Zbl 1334.60060
[70] Tong, X., Majda, A., and Kelly, D., Nonlinear stability the ensemble Kalman filter with adaptive covariance inflation, Commun. Math. Sci., 14 (2016), pp. 1283-1313, doi:10.1088/0951-7715/29/2/657. · Zbl 1370.37009
[71] Vlachas, P. R., Byeon, W., Wan, Z. Y., Sapsis, T. P., and Koumoutsakos, P., Data-driven forecasting of high-dimensional chaotic systems with long short-term memory networks, Proc. A, 474 (2018), 20170844. · Zbl 1402.92030
[72] Vlachas, P. R., Pathak, J., Hunt, B. R., Sapsis, T. P., Girvan, M., Ott, E., and Koumoutsakos, P., Backpropagation algorithms and reservoir computing in recurrent neural networks for the forecasting of complex spatiotemporal dynamics, Neural Netw., 126 (2020), pp. 191-217.
[73] Wheeler, M. and Hendon, H., An all-season real-time multivariate MJO index: Development of an index for monitoring and prediction, Monthly Weather Rev., 132 (2004), pp. 1917-1932, doi:10.1175/1520-0493(2004)132<1917:AARMMI>2.0.CO;2.
[74] Wheeler, M. and Kiladis, G., Convectively coupled equatorial waves: Analysis of clouds and temperature in the wavenumber-frequency domain, J. Atmos. Sci., 56 (1999), pp. 374-399, doi:10.1175/1520-0469(1999)056<0374:CCEWAO>2.0.CO;2.
[75] Xue, L., Application of the multimodel ensemble Kalman filter method in groundwater system, Water, 7 (2015), pp. 528-545, doi:10.3390/w7020528.
[76] Xue, L. and Zhang, D., A multimodel data assimilation framework via the ensemble Kalman filter, Water Resour. Res., 50 (2014), pp. 4197-4219, doi:10.1002/2013WR014525.
[77] Yun, W., Stefanova, L., Mitra, A., Kumar, V., Dewar, W., and Krishnamurti, T., A multi-model superensemble algorithm for seasonal climate prediction using DEMETER forecasts, Tellus A, 57 (2005), pp. 280-289, doi:10.3402/tellusa.v57i3.14699.
[78] Zarchan, P. and Musoff, H., Fundamentals of Kalman Filtering: A Practical Approach, 3rd ed., American Institute of Aeronautics and Astronautics, Reston, VA, 2009.
[79] Zebiak, S. E. and Cane, M. A., A model El Niño-Southern oscillation, Monthly Weather Rev., 115 (1987), pp. 2262-2278.
[80] Zhang, C., Madden-Julian oscillation, Rev. Geophys., 43 (2005), pp. 1-36, doi:10.1029/2004RG000158.
[81] Zhang, Z. and Moore, J., Empirical orthogonal functions, in Mathematical and Physical Fundamentals of Climate Change, Elsevier, Oxford, UK, 2015, pp. 161-198.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.