×

Bayesian inference for zero-and/or-one augmented beta rectangular regression models. (English) Zbl 07477283

Summary: In this paper, we developed a full set of Bayesian inference tools, for zero-and/or-one augmented beta rectangular regression models to analyze limited-augmented data, under a new parameterization. This parameterization: facilitates the development of both regression models and inferential tools as well as make simplifies the respective computational implementations. The proposed Bayesian tools were parameter estimation, model fit assessment, model comparison (information criteria), residual analysis and case influence diagnostics, developed through MCMC algorithms. In addition, we adapted available methods of posterior predictive checking, using appropriate discrepancy measures. We conducted several simulation studies, considering some situations of practical interest, aiming to evaluate: prior sensitivity choice, parameter recovery of the proposed model and estimation method, the impact of transforming the observed zeros and ones, along with the use of non-augmented models, and the behavior of the proposed model fit assessment and model comparison tools. A psychometric real data set was analyzed to illustrate the performance of the developed tools, illustrating the advantages of the developed analysis framework.

MSC:

62-XX Statistics
91-XX Game theory, economics, finance, and other social and behavioral sciences

Software:

R; Stan; betareg; BayesDA
Full Text: DOI

References:

[1] Ando, T. (2007). Bayesian predictive information criterion for the evaluation of hierarchical Bayesian and empirical Bayes models. Biometrika 94, 443-458. · Zbl 1132.62005
[2] Atkinson, A. C. (1985). Plots, Transformations, and Regression: An Introduction to Graphical Methods of Diagnostic Regression Analysis. Oxford: Clarendon Press. · Zbl 0582.62065
[3] Baghishani, H. and Mohammadzadeh, M. (2012). Asymptotic normality of posterior distributions for generalized linear mixed models. Journal of Multivariate Analysis 111, 66-77. · Zbl 1281.62161 · doi:10.1016/j.jmva.2012.05.003
[4] Bandyopadhyay, D., Galvis, D. M. and Lachos, V. H. (2017). Augmented mixed models for clustered proportion data. Statistical Methods in Medical Research 26, 880-897. · doi:10.1177/0962280214561093
[5] Bayarri, M. J. and Berger, J. O. (2000). P-values for composite null models. Journal of the American Statistical Association 95, 1127-1142. · Zbl 1004.62022 · doi:10.2307/2669749
[6] Bayes, C. L., Bazán, J. L. and García, C. (2012). A new robust regression model for proportions. Bayesian Analysis 7, 841-866. · Zbl 1330.62272 · doi:10.1214/12-BA728
[7] Branscum, A. J., Johnson, W. O. and Thurmond, M. C. (2007). Bayesian beta regression: Application to household data and genetic distance between foot-and-mouth disease viruses. Australian & New Zealand Journal of Statistics 49, 287-301. · Zbl 1136.62323 · doi:10.1111/j.1467-842X.2007.00481.x
[8] Buckley, J. (2003). Estimation of models with beta-distributed dependent variables: A replication and extension of Paolino’s study. Political Analysis 11, 204-205.
[9] Carlstrom, L., Woodward, J. and Palmer, C. (2000). Evaluating the simplified conjoint expected risk model: Comparing the use of objective and subjective information. Risk Analysis 20, 385-392.
[10] Carpenter, B., Gelman, A., Hoffman, M., Lee, D., Goodrich, B., Betancourt, M., Brubaker, M. A., Guo, J., Li, P. and Riddell, A. (2017). Stan: A probabilistic programming language. Journal of Statistical Software 76, 1.
[11] Cho, H., Ibrahim, J. G., Sinha, D. and Zhu, H. (2009). Bayesian case influence diagnostics for survival models. Biometrics 65, 116-124. · Zbl 1159.62073 · doi:10.1111/j.1541-0420.2008.01037.x
[12] Cox, D. R. and Snell, E. J. (1968). A general definition of residuals. Journal of the Royal Statistical Society, Series B, Methodological 30, 248-275. · Zbl 0164.48903 · doi:10.1111/j.2517-6161.1968.tb00724.x
[13] Cribari-Neto, F. and Zeileis, A. (2010). Beta regression in R. Journal of Statistical Software 34, 1-24.
[14] Dunn, P. K. and Smyth, G. K. (1996). Randomized quantile residuals. Journal of Computational and Graphical Statistics 5, 236-244.
[15] Ferrari, S. L. P. and Cribari-Neto, F. (2004). Beta regression for modelling rates and proportions. Journal of Applied Statistics 31, 799-815. · Zbl 1121.62367 · doi:10.1080/0266476042000214501
[16] Figueroa-Zúñiga, J. I., Arellano-Valle, R. B. and Ferrari, S. L. P. (2013). Mixed beta regression: A Bayesian perspective. Computational Statistics & Data Analysis 61, 137-147. · Zbl 1348.62194
[17] Galvis, D. M., Bandyopadhyay, D. and Lachos, V. H. (2014). Augmented mixed beta regression models for periodontal proportion data. Statistics in Medicine 33, 3759-3771.
[18] Gamerman, D. and Lopes, H. (2006). Stochastic Simulation for Bayesian Inference, 2nd ed. New York, NY: Chapman & Hall/CRC. · Zbl 1137.62011
[19] Gelfand, A. E., Dey, D. K. and Chang, H. (1992). Model determination using predictive distributions with implementation via sampling-based methods. DTIC Document.
[20] Gelman, A., Carlin, J. B., Stern, H. S. and Rubin, D. B. (2003). Bayesian Data Analysis, 2nd ed. London: Taylor & Francis.
[21] Gelman, A., Meng, X.-L. and Stern, H. (1996). Posterior predictive assessment of model fitness via realized discrepancies. Statistica Sinica 6, 733-760. · Zbl 0859.62028
[22] Gonçalves, F. B., Gamerman, D. and Soares, T. M. (2013). Simultaneous multifactor DIF analysis and detection in item response theory. Computational Statistics & Data Analysis 59, 144-160. · Zbl 1400.62005 · doi:10.1016/j.csda.2012.10.011
[23] Hartigan, J. A. (2011). Bayes Theory. Berlin: Springer. · doi:10.1007/978-1-4613-8242-3
[24] Homan, M. D. and Gelman, A. (2014). The no-U-turn sampler: Adaptively setting path lengths in Hamiltonian Monte Carlo. Journal of Machine Learning Research 15, 1593-1623. · Zbl 1319.60150
[25] Ibrahim, J. G., Chen, M. H. and Sinha, D. (2001). Bayesian Survival Analysis. New York: Springer. · Zbl 0978.62091
[26] Ma, Z. and Leijon, A. (2011). Bayesian estimation of beta mixture models with variational inference. IEEE Transactions on Pattern Analysis and Machine Intelligence 33, 2160-2173.
[27] Nogarotto, D. C., Azevedo, C. L. N. and Bazán, J. L. (2020). Bayesian modeling and prior sensitivity analysis for zero-one augmented beta regression models with an application to psychometric data. Brazilian Journal of Probability and Statistics 34, 304-322. · Zbl 1445.62171 · doi:10.1214/18-BJPS423
[28] Ospina, R. (2008). Inflated Beta Regression Model. Doctoral’s thesis, IME-USP (in Portuguese).
[29] Ospina, R. and Ferrari, S. L. P. (2010). Inflated beta distributions. Statistical Papers 51, 111-126. · Zbl 1247.62043 · doi:10.1007/s00362-008-0125-4
[30] Ospina, R. and Ferrari, S. L. P. (2012). A general class of zero-or-one inflated beta regression models. Computational Statistics & Data Analysis 56, 1609-1623. · Zbl 1243.62099 · doi:10.1016/j.csda.2011.10.005
[31] Paolino, P. (2001). Maximum likelihood estimation of models with beta-distributed dependent variables. Political Analysis 9, 325-346.
[32] R Development Core Team (2020). R: A Language and Environment for Statis Tical Computing. Vienna, Austria: R Foundation for Statistical Computing. http://www.R-project.org.
[33] Rubin, D. B. (1984). Bayesianly justifiable and relevant frequency calculations for the applies statistician. The Annals of Statistics 12, 1151-1172. · Zbl 0555.62010 · doi:10.1214/aos/1176346785
[34] Rue, H. and Martino, S. (2009). Approximate Bayesian inference for latent Gaussian models by using integrated nested Laplace approximations. Journal of the Royal Statistical Society, Series B 71, 319-392. · Zbl 1248.62156 · doi:10.1111/j.1467-9868.2008.00700.x
[35] Silva, A. R. S., Azevedo, C. L. N., Bazán, J. L. and Nobre, J. S. (2021). Supplement to “Bayesian inference for zero-and/or-one augmented beta rectangular regression models.” · Zbl 07477283 · doi:10.1214/21-BJPS505SUPP
[36] Silva, A. R. S., Azevedo, C. L. N., Nobre, J. S. and Bazán, J. L. (2021). Augmented-limited regression models with an application to the study of the risk perceived using continuous scales. Journal of Applied Statistics 48, 1998-2021. · Zbl 1521.62477 · doi:10.1080/02664763.2020.1783518
[37] Silvapulle, M. J. and Sen, P. K. (2004). Constrained Statistical Inference: Order, Inequality, and Shape Constraints. New York: Wiley.
[38] Sinharay, S., Johnson, M. S. and Stern, H. S. (2006). Posterior predictive assessment of item response theory models. Applied Psychological Measurement 30, 298-321. · doi:10.1177/0146621605285517
[39] Sinharay, S. and Stern, H. S. (2003). Posterior predictive model checking in hierarchical models. Journal of Statistical Planning and Inference 111, 209-221. · Zbl 1033.62027 · doi:10.1016/S0378-3758(02)00303-8
[40] Smithson, M. and Verkuilen, J. (2006). A better lemon squeezer? Maximum-likelihood regression with beta-distributed dependent variables. Psychological Methods 11, 54.
[41] Spiegelhalter, D. J., Best, N. G., Carlin, B. P. and Der Linde, A. (2002). Bayesian measures of model complexity and fit. Journal of the Royal Statistical Society, Series B, Statistical Methodology 64, 583-639. · Zbl 1067.62010 · doi:10.1111/1467-9868.00353
[42] Wang, J. and Luo, S. (2016). Augmented Beta rectangular regression models: A Bayesian perspective. Biometrical Journal 58, 206-221. · Zbl 1403.62215 · doi:10.1002/bimj.201400232
[43] Wang, J. and Luo, S. (2017). Bayesian multivariate augmented Beta rectangular regression models for patient-reported outcomes and survival data. Statistical Methods in Medical Research 26, 1684-1699 · doi:10.1177/0962280215586010
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.