×

Robust analogs to the coefficient of variation. (English) Zbl 07484694

Summary: The coefficient of variation (CV) is commonly used to measure relative dispersion. However, since it is based on the sample mean and standard deviation, outliers can adversely affect it. Additionally, for skewed distributions the mean and standard deviation may be difficult to interpret and, consequently, that may also be the case for the CV. Here we investigate the extent to which quantile-based measures of relative dispersion can provide appropriate summary information as an alternative to the CV. In particular, we investigate two measures, the first being the interquartile range (in lieu of the standard deviation), divided by the median (in lieu of the mean), and the second being the median absolute deviation, divided by the median, as robust estimators of relative dispersion. In addition to comparing the influence functions of the competing estimators and their asymptotic biases and variances, we compare interval estimators using simulation studies to assess coverage.

MSC:

62-XX Statistics

References:

[1] Andersen, R., Modern Methods for Robust Regression, 152 (2008), SAGE
[2] Arachchige, C. N.; Cairns, M.; Prendergast, L. A., Interval estimators for ratios of independent quantiles and interquantile ranges, Commun. Stat. B: Simul. Comput. (2019) · Zbl 07553318 · doi:10.1080/03610918.2019.1634814
[3] Atkinson, A. B., On the measurement of inequality, J. Econ. Theor., 2 (1970) · Zbl 07553318 · doi:10.1080/03610918.2019.1634814
[4] Bonett, D. G., Confidence interval for a coefficient of quartile variation, Comput. Stat. Data Anal., 50, 2953-2957 (2006) · Zbl 1445.62095
[5] Bonett, D. G.; Seier, E., Confidence interval for a coefficient of dispersion in nonnormal distributions, Biom. J., 47, 144-148 (2005) · Zbl 1442.62278
[6] Bulent, A.; Hamza, G., Bootstrap confidence intervals for the coefficient of quartile variation, Commun. Stat. B: Simul. Comput., 48, 2138-2146 (2018) · Zbl 07551944
[7] Canty, A. and Ripley, B.D., boot: Bootstrap R (S-Plus) Functions, R package version 1.3-23, 2019.
[8] Chang, W., Cheng, J., Allaire, J.J., Xie, Y., and McPherson, J., shiny: Web Application Framework for R, R package version 1.0.5, 2017; software available at https://CRAN.R-project.org/package=shiny.
[9] Chen, J.; Fleisher, B. M., Regional income inequality and economic growth in China, J. Comput. Econ., 22, 141-164 (1996)
[10] Cole, T. J.; Bellizzi, M. C.; Flegal, K. M.; Dietz, W. H., Establishing a standard definition for child overweight and obesity worldwide: International survey, BMJ Br. Med. J., 320, 1240 (2000)
[11] DasGupta, A., Asymptotic Theory of Statistics and Probability (2006), Springer: Springer, New York (NY)
[12] David, H., Order Statistics (1981), John Wiley & Sons: John Wiley & Sons, New York · Zbl 0553.62046
[13] Dedduwakumara, D. S.; Prendergast, L. A.; Staudte, R. G., A simple and efficient method for finding the closest generalized lambda distribution to a specific model, Cogent Math. Stat., 6, 1-11 (2019) · Zbl 1426.62072
[14] Efron, B., Better bootstrap confidence intervals, J. Am. Stat. Assoc., 82, 171-185 (1987) · Zbl 0622.62039
[15] Efron, B.; Tibshirani, R. J., An Introduction to the Bootstrap (1993), Chapman and Hall: Chapman and Hall, New York · Zbl 0835.62038
[16] Epanechnikov, V. A., Nonparametric estimation of a multivariate probability density, Theor. Probab. Appl., 14, 153-158 (1969) · Zbl 0175.17101
[17] Falk, M., Asymptotic independence of median and mad, Stat. Probab. Lett., 34, 341-345 (1997) · Zbl 0874.62047
[18] Freimer, M.; Mudholkar, G. S.; Kollia, G.; Lin, C. T., A study of the generalized Tukey lambda family, Commun. Stat. A - Theory Methods, 17, 3547-3567 (1988) · Zbl 0696.62021
[19] Gastwirth, J. L., Statistical properties of a measure of tax assessment uniformity, J. Stat. Plan. Inference, 6, 1-12 (1982) · Zbl 0544.62098
[20] Gong, J.; Li, Y., Relationship between the estimated Weibull modulus and the coefficient of variation of the measured strength for ceramics, J. Am. Ceram. Soc., 82, 449-452 (1999)
[21] Groeneveld, R. A., Influence functions for the coefficient of variation, its inverse, and CV comparisons, Commun. Stat. A - Theory Methods, 40, 4139-4150 (2011) · Zbl 1239.62023
[22] Gulhar, M.; Kibria, G.; Albatineh, A.; Ahmed, N. U., A comparison of some confidence intervals for estimating the population coefficient of variation: A simulation study, SORT, 36, 45-68 (2012) · Zbl 1296.62050
[23] Hamer, A. J.; Strachan, J. R.; Black, M. M.; Ibbotson, C.; Elson, R. A., A new method of comparative bone strength measurement, J. Med. Eng. Technol., 19, 1-5 (1995)
[24] Hampel, F. R., The influence curve and its role in robust estimation, J. Am. Stat. Assoc., 69, 383-393 (1974) · Zbl 0305.62031
[25] Hampel, F. R.; Ronchetti, E. M.; Rousseeuw, P. J.; Stahel, W. A., Robust Statistics: The Approach Based on Influence Functions (1986), John Wiley and Sons: John Wiley and Sons, New York · Zbl 0593.62027
[26] Heritier, S.; Cantoni, E.; Copt, S.; Victoria-Feser, M. P., Robust Methods in Biostatistics, 825 (2009), John Wiley & Sons · Zbl 1163.62085
[27] Hintze, J. L.; Nelson, R. D., Violin plots: A box plot-density trace synergism, Am. Stat., 52, 181-184 (1998)
[28] Huber, P. J., Robust Statistics (1981), Wiley · Zbl 0536.62025
[29] Hyndman, R. J.; Fan, Y., Sample quantiles in statistical packages, Am. Stat., 50, 361-365 (1996)
[30] Karian, Z. A.; Dudewicz, E. J., Fitting Statistical Distributions: The Generalized Lambda Distribution and Generalized Bootstrap Methods (2000), Chapman and Hall · Zbl 1058.62500
[31] King, R., Dean, B., and Klinke, S., gld: Estimation and Use of the Generalised (Tukey) Lambda Distribution, R package version 2.4.1, 2016; software available at https://CRAN.R-project.org/package=gld.
[32] Lovitt, W. V.; Holtzclaw, H. F., Statistics (1929), Prentice-Hall, Inc. · JFM 55.0939.21
[33] McKay, A. T., Distribution of the coefficient of variation and the extended ‘t’ distribution, J. R. Stat. Soc., 95, 695-698 (1932) · Zbl 0005.30204
[34] Miller, E. G., Asymptotic test statistics for coefficients of variation, Commun. Stat. A - Theory Methods, 20, 3351-3363 (1991)
[35] Miller, E.G. and Karson, M.J., Testing equality of two coefficients of variation, Am. Stat. Assoc.: Proc. the Bus. Econ. Sect., Part I, 95, (1977), pp. 278-283.
[36] Panichkitkosolkul, W., Improved confidence intervals for a coefficient of variation of a normal distribution, Thailand Stat., 7, 193-199 (2009) · Zbl 1364.62073
[37] Prendergast, L. A.; Staudte, R. G., Exploiting the quantile optimality ratio in finding confidence intervals for quantiles, Stat, 5, 70-81 (2016) · Zbl 07848551
[38] Prendergast, L. A.; Staudte, R. G., Quantile versions of the Lorenz curve, Electron. J. Stat., 10, 1896-1926 (2016) · Zbl 1404.62145
[39] Prendergast, L. A.; Staudte, R. G., When large n is not enough – distribution-free interval estimators for ratios of quantiles, J. Econ. Inequal., 15, 1-17 (2017)
[40] Prendergast, L. A.; Staudte, R. G., A simple and effective inequality measure, Am. Stat., 72, 328-343 (2017) · Zbl 07663957
[41] R Development Core Team, R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing, Vienna, 2008. http://www.R-project.org.
[42] Reed, G. F.; Lynn, F.; Meade, B. D., Use of coefficient of variation in assessing variability of quantitative assays, Clin. Diagn. Lab. Immun., 9, 1235-1239 (2002)
[43] Reimann, C., Filzmoser, P., Garrett, R.G., and Dutter, R., Statistical Data Analysis Explained: Applied Environmental Statistics with R, John Wiley & Sons, Chichester, 2008, ISBN: 978-0-470-98581-6.
[44] Ruckdeschel, P.; Kohl, M.; Stabla, T.; Camphausen, F., S4 classes for distributions, R News, 6, 2-6 (2006)
[45] Shapiro, H. M., Practical Flow Cytometry (2005), John Wiley & Sons
[46] Sharma, K. K.; Krishna, H., Asymptotic sampling distribution of inverse coefficient-of-variation and its applications, IEEE T. Reliab., 43, 630-633 (1994)
[47] Staudte, R. G.; Sheather, S. J., Robust Estimation and Testing (1990), Wiley: Wiley, New York · Zbl 0706.62037
[48] Vangel, M. G., Confidence intervals for a normal coefficient of variation, Am. Stat., 50, 21-26 (1996)
[49] Varmuza, K.; Filzmoser, P., Introduction to Multivariate Statistical Analysis in Chemometrics (2009), CRC Press
[50] Wickham, H., ggplot2: Elegant Graphics for Data Analysis (2016), Springer-Verlag: Springer-Verlag, New York · Zbl 1397.62006
[51] Wilcox, R. R., Introduction to Robust Estimation and Hypothesis Testing, Academic Press · Zbl 0991.62508
[52] Wuertz, D., Setz, T., Chalabi, Y., Maechler, M., and Setz, M.T., Package ‘fbasics’, Rmetrics-markets and basic statistics, R Foundation for Statistical Computing, 2017.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.