×

Uncertainty propagation in multibody human model dynamics. (English) Zbl 1418.70017

Summary: In biomechanics, calibration of body segment inertial parameters (BSIP) is crucial to take into account subject morphological specificities. To avoid strenuous protocols, identification methods based on rigid body dynamics laws have been proposed. Thanks to a motion capture system and force platforms, these methods optimize BSIP by minimizing errors in the equations of motion. These errors can be defined as the dynamic residuals reflecting inaccuracies arising from estimated BSIP, as well as from kinematics and force plate measurements. The current study aims at evaluating the part of uncertainty on the dynamic residuals directly related to kinematics and force plate measurements. To answer this question, we captured the movements of 10 participants performing a standardized motion. We then applied a Monte Carlo-based approach to introduce variations in the kinematics and force plate measurements, and evaluated the reconstructed difference on the dynamic residuals. Results show that, first, the BSIP evaluation using a regression method seemed to be an acceptable estimate for the studied subjects. Second, the part of uncertainty in the dynamic residuals was significantly higher than the dynamic residuals obtained. In conclusion, a subject-specific calibration of the BSIP based on dynamic residuals, for this model and protocol, seems irrelevant and prone to overfitting of BSIP.

MSC:

70E60 Robot dynamics and control of rigid bodies
70B15 Kinematics of mechanisms and robots
70E55 Dynamics of multibody systems

Software:

AnyBody; OpenSim

References:

[1] Andrews, J.G., Mish, S.P.: Methods for investigating the sensitivity of joint resultants to body segment parameter variations. J. Biomech. 29(5), 651-654 (1996) · doi:10.1016/0021-9290(95)00118-2
[2] Andriacchi, T.P., Alexander, E.J.: Studies of human locomotion: past, present and future. J. Biomech. 33(10), 1217-1224 (2000) · doi:10.1016/S0021-9290(00)00061-0
[3] Babyak, M.A.: What you see may not be what you get: a brief, nontechnical introduction to overfitting in regression-type models. Psychosom. Med. 66(3), 411-421 (2004)
[4] Chandler, R.F., Clauser, C.E., McConville, J.T., Reynolds, H.M., Young, J.W.: Investigation of inertial properties of the human body. Tech. Rep. (1975)
[5] Cheze, L., Fregly, B., Dimnet, J.: A solidification procedure to facilitate kinematic analyses based on video system data. J. Biomech. 28(7), 879-884 (1995) · doi:10.1016/0021-9290(95)95278-D
[6] Damsgaard, M., Rasmussen, J., Christensen, S., Surma, E., de Zee, M.: Analysis of musculoskeletal systems in the AnyBody modeling system. Simul. Model. Pract. Theory 14(8), 1100-1111 (2006) · doi:10.1016/j.simpat.2006.09.001
[7] Davidson, P.L., Wilson, S.J., Wilson, B.D., Chalmers, D.J.: Estimating subject-specific body segment parameters using a 3-dimensional modeller program. J. Biomech. 41(16), 3506-3510 (2008) · doi:10.1016/j.jbiomech.2008.09.021
[8] de Zee, M., Hansen, L., Wong, C., Rasmussen, J., Simonsen, E.B.: A generic detailed rigid-body lumbar spine model. J. Biomech. 40(6), 1219-1227 (2007) · doi:10.1016/j.jbiomech.2006.05.030
[9] Delp, S., Anderson, F., Arnold, A., Loan, P., Habib, A., John, C., Guendelman, E., Thelen, D.: OpenSim: open-source software to create and analyze dynamic simulations of movement. IEEE Trans. Biomed. Eng. 54(11), 1940-1950 (2007) · doi:10.1109/TBME.2007.901024
[10] Dempster, W.: Space requirements of the seated operator: geometrical, kinematic, and mechanical aspects of the body, with special reference to the limbs (1955)
[11] Dumas, R., Chèze, L., Verriest, J. et al.: Adjustments to McConville et al. and Young et al. body segment inertial parameters. J. Biomech. 40(3), 543-553 (2007) · doi:10.1016/j.jbiomech.2006.02.013
[12] Featherstone, R.: Rigid Body Dynamics Algorithms (2008) · Zbl 1146.70002
[13] Hansen, C., Venture, G., Rezzoug, N., Gorce, P., Isableu, B.: An individual and dynamic body segment inertial parameter validation method using ground reaction forces. J. Biomech. 47(7), 1577-1581 (2014) · doi:10.1016/j.jbiomech.2014.03.004
[14] Jensen, R.K.: Estimation of the biomechanical properties of three body types using a photogrammetric method. J. Biomech. 11(8), 349-358 (1978) · doi:10.1016/0021-9290(78)90069-6
[15] Kuo, A.: A least-squares estimation approach to improving the precision of inverse dynamics computations. J. Biomech. Eng. 120(1), 148-159 (1998) · doi:10.1115/1.2834295
[16] Laitenberger, M., Raison, M., Périé, D., Begon, M.: Refinement of the upper limb joint kinematics and dynamics using a subject-specific closed-loop forearm model. Multibody Syst. Dyn. 33(4), 413-438 (2015) · doi:10.1007/s11044-014-9421-z
[17] Leva, P.D.: Adjustments to Zatsiorsky-Seluyanov’s segment inertia parameters. J. Biomech. 29(9), 1223-1230 (1996) · doi:10.1016/0021-9290(95)00178-6
[18] Lu, T.W., O’Connor, J.J.: Bone position estimation from skin marker co-ordinates using global optimisation with joint constraints. J. Biomech. 32(2), 129-134 (1999) · doi:10.1016/S0021-9290(98)00158-4
[19] Lund, M.E., Andersen, M.S., de Zee, M., Rasmussen, J.: Scaling of musculoskeletal models from static and dynamic trials. Int. Biomech. 2(1), 1-11 (2015) · doi:10.1080/23335432.2014.993706
[20] Muller, A.; Germain, C.; Pontonnier, C.; Dumont, G., A Simple method to calibrate kinematical invariants: application to overhead throwing (2015)
[21] Muller, A., Pontonnier, C., Germain, C., Dumont, G.: Dealing with Modularity of Multibody Models. Comput. Methods Biomech. Biomed. Eng. 18(1), 2008-2009 (2015) · doi:10.1080/10255842.2015.1069599
[22] Ojeda, J., Martínez-Reina, J., Mayo, J.: The effect of kinematic constraints in the inverse dynamics problem in biomechanics. Multibody Syst. Dyn. (2016) · Zbl 1426.74230
[23] Pàmies-Vilà, R., Font-Llagunes, J.M., Cuadrado, J., Alonso, F.J.: Analysis of different uncertainties in the inverse dynamic analysis of human gait. Mech. Mach. Theory 58, 153-164 (2012) · doi:10.1016/j.mechmachtheory.2012.07.010
[24] Pearsall, D.J., Reid, J.G., Ross, R.: Inertial properties of the human trunk of males determined from magnetic resonance imaging. Ann. Biomed. Eng. 22(6), 692-706 (1994) · doi:10.1007/BF02368294
[25] Rao, G., Amarantini, D., Berton, E., Favier, D.: Influence of body segments’ parameters estimation models on inverse dynamics solutions during gait. J. Biomech. 39(8), 1531-1536 (2006) · doi:10.1016/j.jbiomech.2005.04.014
[26] Reinbolt, J.A., Haftka, R.T., Chmielewski, T.L., Fregly, B.J.: Are patient-specific joint and inertial parameters necessary for accurate inverse dynamics analyses of gait? IEEE Trans. Biomed. Eng. 54(5), 782-793 (2007) · doi:10.1109/TBME.2006.889187
[27] Riemer, R., Hsiao-Wecksler, E.T., Zhang, X.: Uncertainties in inverse dynamics solutions: a comprehensive analysis and an application to gait. Gait Posture 27(4), 578-588 (2008) · doi:10.1016/j.gaitpost.2007.07.012
[28] Silva, M.P.T., Ambrósio, J.A.C.: In: Kinematic Data Consistency in the Inverse Dynamic Analysis of Biomechanical Systems, pp. 219-239 (2002) · Zbl 1246.74034
[29] van den Bogert, A.J., Su, A.: A weighted least squares method for inverse dynamic analysis. Comput. Methods Biomech. Biomed. Eng. 11(1), 3-9 (2008) · doi:10.1080/10255840701550865
[30] van der Helm, F.C.: A finite element musculoskeletal model of the shoulder mechanism. J. Biomech. 27(5), 551-569 (1994) · doi:10.1016/0021-9290(94)90065-5
[31] Vaughan, C.L., Andrews, J.G., Hay, J.G.: Selection of body segment parameters by optimization methods. J. Biomech. Eng. 104(1), 38-44 (1982) · doi:10.1115/1.3138301
[32] Venture, G.; Ayusawa, K.; Nakamura, Y., A numerical method for choosing motions with optimal excitation properties for identification of biped dynamics—an application to human, 1226-1231 (2009) · doi:10.1109/ROBOT.2009.5152264
[33] Venture, G.; Ayusawa, K.; Nakamura, Y., Identification of human mass properties from motion, No. 15, 988-993 (2009) · Zbl 1162.68017
[34] Winter, D.: Biomechanics and Motor Control of Human Movement. Wiley, New York (2009) · doi:10.1002/9780470549148
[35] Wu, G., Cavanagh, P.R.: ISB recommendations for standardization in the reporting of kinematic data. J. Biomech. 28(10), 1257-1261 (1995) · doi:10.1016/0021-9290(95)00017-C
[36] Wu, G., Siegler, S., Allard, P., Kirtley, C., Leardini, A., Rosenbaum, D., Whittle, M., D’Lima, D.D., Cristofolini, L., Witte, H., Schmid, O., Stokes, I.: ISB recommendation on definitions of joint coordinate system of various joints for the reporting of human joint motion, part I: ankle, hip, and spine. J. Biomech. 35(4), 543-548 (2002) · doi:10.1016/S0021-9290(01)00222-6
[37] Wu, G., van der Helm, F.C., DirkJan Veeger, H., Makhsous, M., Van Roy, P., Anglin, C., Nagels, J., Karduna, A.R., McQuade, K., Wang, X., Werner, F.W., Buchholz, B.: ISB recommendation on definitions of joint coordinate systems of various joints for the reporting of human joint motion, part II: shoulder, elbow, wrist and hand. J. Biomech. 38(5), 981-992 (2005) · doi:10.1016/j.jbiomech.2004.05.042
[38] Zatsiorsky, M., Seluyanov, V.: The mass and inertia characteristics of the main segments of the human body. Biomechanics 56(2), 1152-1159 (1983)
[39] Zatsiorsky, M.; Seluyanov, V.; Chugunova, L., In vivo body segment inertial parameters determination using a gamme-scanner method, 196-202 (1990)
[40] Zhao, J.; Wei, Y.; Xia, S.; Wang, Z., Estimating human body segment parameters using motion capture data, 243-249 (2010) · doi:10.1109/IUCS.2010.5666224
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.