×

On nonlinear singular BVPs with nonsmooth data. II: Convergence of collocation methods. (English) Zbl 1482.65116

Summary: We discuss numerical solution of boundary value problems for systems of nonlinear ordinary differential equations with a time singularity, \[ x'(t)=\frac{M(t)}{t}x(t)+\frac{f(t,x(t))}{t},\quad t\in(0,1],\quad b(x(0),x(1))=0, \] where \(M:[0,1]\to\mathbb{R}^{n\times n}\) and \(f:[0,1]\times\mathbb{R}^n\to\mathbb{R}^n\) are continuous matrix-valued and vector-valued functions, respectively. Moreover, \(b:\mathbb{R}^n\times\mathbb{R}^n\to\mathbb{R}^n\) is a continuous nonlinear mapping which is specified according to a spectrum of the matrix \(M(0)\) to guarantee the BVP to be well-posed. For the case where \(M(0)\) has eigenvalues with nonzero real parts, we prove new convergence results for the collocation method and analytical results about the necessary smoothness of the solution to the problem required in the numerical analysis.
We illustrate the theory by means of numerical examples.
For Part I see [Appl. Numer. Math. 130, 23–50 (2018; Zbl 1397.34048)].

MSC:

65L10 Numerical solution of boundary value problems involving ordinary differential equations
65L60 Finite element, Rayleigh-Ritz, Galerkin and collocation methods for ordinary differential equations
65L20 Stability and convergence of numerical methods for ordinary differential equations

Citations:

Zbl 1397.34048

References:

[1] Ascher, U.; Mattheij, R.; Russell, R., Numerical Solution of Boundary Value Problems for Ordinary Differential Equations (1988), Prentice-Hall: Prentice-Hall Englewood Cliffs, NJ · Zbl 0671.65063
[2] Auzinger, W.; Koch, O.; Weinmüller, E. B., Efficient collocation schemes for singular boundary value problems, Numer. Algorithms, 31, 5-25 (2002) · Zbl 1021.65038
[3] Auzinger, W.; Kneisl, G.; Koch, O.; Weinmüller, E. B., A collocation code for boundary value problems in ordinary differential equations, Numer. Algorithms, 33, 27-39 (2003) · Zbl 1030.65089
[4] Auzinger, W.; Koch, O.; Weinmüller, E. B., Analysis of a new error estimate for collocation methods applied to singular boundary value problems, SIAM J. Numer. Anal., 42, 2366-2386 (2005) · Zbl 1087.65082
[5] Budd, C. J.; Koch, O.; Weinmüller, E. B., Self-similar blow-up in nonlinear PDEs, (AURORA TR-2004-15. AURORA TR-2004-15, Institute for Analysis and Scientific Computing, Vienna University of Technology, Austria (2004))
[6] Burkotová, J.; Rachůnková, I.; Staněk, S.; Weinmüller, E. B., On linear ODEs with a time singularity of the first kind and unsmooth inhomogeneity, Bound. Value Probl., 183 (2014), 34 pages · Zbl 1316.34025
[7] Burkotová, J.; Rachůnková, I.; Weinmüller, E. B., On singular BVPs with nonsmooth data: analysis of the linear case with variable coefficient matrix, Appl. Numer. Math., 114, 77-96 (2017) · Zbl 1357.65098
[8] Burkotová, J.; Rachůnková, I.; Weinmüller, E. B., On singular BVPs with unsmooth data – convergence of the collocation schemes, BIT Numer. Math., 57, 1153-1184 (2017) · Zbl 1421.65021
[9] Burkotová, J.; Rachůnková, I.; Stanek, S.; Weinmüller, E. B.; Wurm, S., On nonlinear singular BVPs with nonsmooth data. Part 1: analytical results, Appl. Numer. Math., 130, 23-50 (2018) · Zbl 1397.34048
[10] De Hoog, F. R.; Weiss, Richard, Collocation methods for singular boundary value problems, SIAM J. Numer. Anal., 15, 198-217 (1978) · Zbl 0398.65051
[11] Hastermann, G.; Lima, P. M.; Morgado, M. L.; Weinmüller, E. B., Density profile equation with p-Laplacian: analysis and numerical simulation, Appl. Math. Comput., 225, 550-561 (2013) · Zbl 1337.65085
[12] Hildebrand, F. B., Introduction to Numerical Analysis (1974), McGraw-Hill: McGraw-Hill New York · Zbl 0279.65001
[13] Keller, H., Newton’s method under mild differentiability conditions, J. Comput. Syst. Sci., 4, 15-28 (1970) · Zbl 0191.16001
[14] Keller, H., Approximation methods for nonlinear problems with application to two-point boundary value problems, Math. Comput., 29, 464-474 (1975) · Zbl 0308.65039
[15] Kitzhofer, G.; Koch, O.; Lima, P.; Weinmüller, E. B., Efficient numerical solution of the density profile equation in hydrodynamics, J. Sci. Comput., 32, 411-424 (2007) · Zbl 1178.76280
[16] Kitzhofer, G.; Koch, O.; Pulverer, G.; Simon, C.; Weinmüller, E. B., Numerical treatment of singular BVPs: the new Matlab code bvpsuite, J. Numer. Anal. Ind. Appl. Math., 5, 113-134 (2010) · Zbl 1432.65100
[17] Koch, O.; Weinmüller, E. B., Analytical and numerical treatment of a singular initial value problem in avalanche modeling, Appl. Math. Comput., 148, 561-570 (2003) · Zbl 1089.34004
[18] Koch, O., Asymptotically correct error estimation for collocation methods applied to singular boundary value problems, Numer. Math., 101, 143-154 (2005) · Zbl 1076.65073
[19] McClung, D. M.; Mears, A. I., Dry-flowing avalanche run-up and run-out, J. Glaciol., 41, 359-369 (1995)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.