×

Using machine learning for model benchmarking and forecasting of depletion-induced seismicity in the Groningen gas field. (English) Zbl 1453.86029

Summary: The Groningen gas field in the Netherlands is experiencing induced seismicity as a result of ongoing depletion. The physical mechanisms that control seismicity have been studied through rock mechanical experiments and combined physical-statistical models to support development of a framework to forecast induced-seismicity risks. To investigate whether machine learning techniques such as Random Forests and Support Vector Machines bring new insights into forecasts of induced seismicity rates in space and time, a pipeline is designed that extends time-series analysis methods to a spatiotemporal framework with a factorial setup, which allows probing a large parameter space of plausible modelling assumptions, followed by a statistical meta-analysis to account for the intrinsic uncertainties in subsurface data and to ensure statistical significance and robustness of results. The pipeline includes model validation using e.g. likelihood ratio tests against average depletion thickness and strain thickness baselines to establish whether the models have statistically significant forecasting power. The methodology is applied to forecast seismicity for two distinctly different gas production scenarios. Results show that seismicity forecasts generated using Support Vector Machines significantly outperform beforementioned baselines. Forecasts from the method hint at decreasing seismicity rates within the next 5 years, in a conservative production scenario, and no such decrease in a higher depletion scenario, although due to the small effective sample size no statistically solid statement of this kind can be made. The presented approach can be used to make forecasts beyond the investigated 5-years period, although this requires addition of limited physics-based constraints to avoid unphysical forecasts.

MSC:

86A15 Seismology (including tsunami modeling), earthquakes
86A32 Geostatistics
68T05 Learning and adaptive systems in artificial intelligence

Software:

R; CGAL; Miniball; mlr; irace; ranger; Boruta

References:

[1] van Elk, J.; Doornhof, D.; Bommer, JJ; Bourne, SJ; Oates, SJ; Pinho, R.; Crowley, H., Hazard and risk assessments for induced seismicity in Groningen, Neth. J. Geosci., 96, s259-s269 (2017) · doi:10.1017/njg.2017.37
[2] Bourne, SJ; Oates, SJ; Van Elk, J.; Doornhof, D., A seismological model for earthquakes induced by fluid extraction from a subsurface reservoir, J. Geophys. Res. Solid Earth, 119, 8991-9015 (2014) · doi:10.1002/2014JB011663
[3] Statistics Netherlands (CBS): Natural gas revenues almost 417 billion euros, https://www.cbs.nl/en-gb/news/2019/22/natural-gas-revenues-almost-417-billion-euros. Accessed 31 Jan 2020
[4] Foulger, GR; Wilson, MP; Gluyas, JG; Julian, BR; Davies, RJ, Global review of human-induced earthquakes, Earth-Sci. Rev., 178, 438-514 (2018) · doi:10.1016/j.earscirev.2017.07.008
[5] Candela, T.; Wassing, B.; ter Heege, J.; Buijze, L., How earthquakes are induced, Science, 360, 80, 598-600 (2018) · doi:10.1126/science.aat2776
[6] van Thienen-Visser, K.; Breunese, JN, Induced seismicity of the Groningen gas field: history and recent developments, Lead. Edge, 34, 664-671 (2015) · doi:10.1190/tle34060664.1
[7] van Thienen-Visser, K.; Pruiksma, JP; Breunese, JN, Compaction and subsidence of the Groningen gas field in the Netherlands, Proc. Int. Assoc. Hydrol. Sci., 372, 367-373 (2015) · doi:10.5194/piahs-372-367-2015
[8] Rutqvist, J.; Rinaldi, AP; Cappa, F.; Moridis, GJ, Modeling of fault activation and seismicity by injection directly into a fault zone associated with hydraulic fracturing of shale-gas reservoirs, J. Pet. Sci. Eng., 127, 377-386 (2015) · doi:10.1016/j.petrol.2015.01.019
[9] Fan, Z.; Eichhubl, P.; Gale, JFW, Geomechanical analysis of fluid injection and seismic fault slip for the M w 4.8 Timpson, Texas, earthquake sequence, J. Geophys. Res. Solid Earth, 121, 2798-2812 (2016) · doi:10.1002/2016JB012821
[10] Stabile, TA; Giocoli, A.; Perrone, A.; Piscitelli, S.; Lapenna, V., Fluid injection induced seismicity reveals a NE dipping fault in the southeastern sector of the high Agri Valley (southern Italy), Geophys. Res. Lett., 41, 5847-5854 (2014) · doi:10.1002/2014GL060948
[11] Izadi, G.; Elsworth, D., Reservoir stimulation and induced seismicity: roles of fluid pressure and thermal transients on reactivated fractured networks, Geothermics., 51, 368-379 (2014) · doi:10.1016/j.geothermics.2014.01.014
[12] Walsh, FR; Zoback, MD, Oklahoma’s recent earthquakes and saltwater disposal, Sci. Adv., 1 (2015) · doi:10.1126/sciadv.1500195
[13] Van Wees, J-D; Fokker, PA; Van Thienen-Visser, K.; Wassing, BBT; Osinga, S.; Orlic, B.; Ghouri, SA; Buijze, L.; Pluymaekers, M., Geomechanical models for induced seismicity in the Netherlands: inferences from simplified analytical, finite element and rupture model approaches, Neth. J. Geosci., 96, s183-s202 (2017) · doi:10.1017/njg.2017.38
[14] Spiers, CJ; Hangx, SJT; Niemeijer, AR, New approaches in experimental research on rock and fault behaviour in the Groningen gas field, Neth. J. Geosci., 96, s55-s69 (2017) · doi:10.1017/njg.2017.32
[15] Hunfeld, LB; Niemeijer, AR; Spiers, CJ, Frictional properties of simulated fault gouges from the Seismogenic Groningen gas field under in situ P - T -chemical conditions, J. Geophys. Res. Solid Earth, 122, 8969-8989 (2017) · doi:10.1002/2017JB014876
[16] Bourne, SJ; Oates, SJ, Extreme threshold failures within a heterogeneous elastic thin sheet and the spatial-temporal development of induced seismicity within the Groningen gas field, J. Geophys. Res. Solid Earth, 122, 299-320 (2017) · doi:10.1002/2017JB014356
[17] Orlic, B.; Wassing, BBT, A study of stress change and fault slip in producing gas reservoirs overlain by elastic and viscoelastic caprocks, Rock Mech. Rock. Eng., 46, 421-435 (2013) · doi:10.1007/s00603-012-0347-6
[18] Postma, T.; Jansen, JD, The small effect of Poroelastic pressure transients on triggering of production-induced earthquakes in the Groningen natural gas field, J. Geophys. Res. Solid Earth, 123, 401-417 (2018) · doi:10.1002/2017JB014809
[19] van der Linden, A.; Makurat, A.; Marcelis, F.; Hol, S.; Bierman, S., Rock physical controls on production-induced compaction in the Groningen field, Sci. Rep., 8, 1-13 (2018) · doi:10.1038/s41598-018-25455-z
[20] Mignan, A.; Broccardo, M.; Wiemer, S.; Giardini, D., Induced seismicity closed-form traffic light system for actuarial decision-making during deep fluid injections, Sci. Rep., 7, 1-10 (2017) · doi:10.1038/s41598-017-13585-9
[21] Broccardo, M.; Mignan, A.; Wiemer, S.; Stojadinovic, B.; Giardini, D., Hierarchical Bayesian modeling of fluid-induced seismicity, Geophys. Res. Lett., 44, 11, 357-11,367 (2017) · doi:10.1002/2017GL075251
[22] van Elk, J., Doornhof, D.: Review and Update of: Study and Data Acquisition Plan Induced Seismicity in Groningen - Update Post-Winningsplan 2016, Assen, Netherlands (2019). https://nam-feitenencijfers.data-app.nl/download/rapport/529d284a-a8e9-4aa8-a52e-3aa17761f40d?open=true. Accessed 31 Jan 2020
[23] Nederlandse Aardolie Maatschappij: Technical Addendum to the Winningsplan Groningen 2016. (2016). https://www.nam.nl/algemeen/mediatheek-en-downloads/winningsplan-2016.html. Accessed 31 Jan 2020
[24] Nederlandse Aardolie Maatschappij: Winningsplan Groningen Gasveld 2016. , Assen, Netherlands (2016). https://www.nam.nl/algemeen/mediatheek-en-downloads/winningsplan-2016.html. Accessed 31 Jan 2020
[25] Melnikov, AA; Nautrup, HP; Krenn, M.; Dunjko, V.; Tiersch, M.; Zeilinger, A.; Briegel, HJ, Active learning machine learns to create new quantum experiments, Proc. Natl. Acad. Sci., 115, 1221-1226 (2018) · doi:10.1073/PNAS.1714936115
[26] Carrasquilla, J.; Melko, RG, Machine learning phases of matter, Nat. Phys., 13, 431-434 (2017) · doi:10.1038/nphys4035
[27] Bergen, KJ; Johnson, PA; de Hoop, MV; Beroza, GC, Machine learning for data-driven discovery in solid Earth geoscience, Science, 363, 8, eaau0323 (2019) · doi:10.1126/science.aau0323
[28] Karpatne, A.; Ebert-Uphoff, I.; Ravela, S.; Babaie, HA; Kumar, V., Machine learning for the geosciences: challenges and opportunities, IEEE Trans. Knowl. Data Eng., 31, 1544-1554 (2019) · doi:10.1109/TKDE.2018.2861006
[29] Pathak, J., Hunt, B., Girvan, M., Lu, Z., Ott, E.: Model-free prediction of large spatiotemporally chaotic systems from data: a reservoir computing approach. Phys. Rev. Lett. 120, (2018). doi:10.1103/PhysRevLett.120.024102
[30] DeVries, PMR; Viégas, F.; Wattenberg, M.; Meade, BJ, Deep learning of aftershock patterns following large earthquakes, Nature., 560, 632-634 (2018) · doi:10.1038/s41586-018-0438-y
[31] Perol, T.; Gharbi, M.; Denolle, M., Convolutional neural network for earthquake detection and location, Sci. Adv., 4 (2018) · doi:10.1126/sciadv.1700578
[32] Rouet-Leduc, B.; Hulbert, C.; Lubbers, N.; Barros, K.; Humphreys, CJ; Johnson, PA, Machine learning predicts laboratory earthquakes, Geophys. Res. Lett., 44, 9276-9282 (2017) · doi:10.1002/2017GL074677
[33] Panakkat, A.; Adeli, H., Recurrent neural network for approximate earthquake time and location prediction using multiple seismicity indicators, Comput. Civ. Infrastruct. Eng., 24, 280-292 (2009) · doi:10.1111/j.1467-8667.2009.00595.x
[34] Asencio-Cortés, G.; Morales-Esteban, A.; Shang, X.; Martínez-Álvarez, F., Earthquake prediction in California using regression algorithms and cloud-based big data infrastructure, Comput. Geosci., 115, 198-210 (2018) · doi:10.1016/j.cageo.2017.10.011
[35] Asencio-Cortés, G.; Martínez-Álvarez, F.; Morales-Esteban, A.; Reyes, J., A sensitivity study of seismicity indicators in supervised learning to improve earthquake prediction, Knowl.-Based Syst., 101, 15-30 (2016) · doi:10.1016/j.knosys.2016.02.014
[36] Last, M.; Rabinowitz, N.; Leonard, G., Predicting the maximum earthquake magnitude from seismic data in Israel and its neighboring countries, PLoS One, 11, 1-16 (2016) · doi:10.1371/journal.pone.0146101
[37] Mignan, A.; Broccardo, M., One neuron versus deep learning in aftershock prediction, Nature., 574, E1-E3 (2019) · doi:10.1038/s41586-019-1582-8
[38] Mignan, A.; Broccardo, M., Neural Network Applications in Earthquake Prediction (1994-2019): Meta-analytic and statistical insights on their limitations, Seismol. Res. Lett., 1-25, 2330-2342 (2020) · doi:10.1785/0220200021
[39] Meade, BJ, Reply to: one neuron versus deep learning in aftershock prediction, Nature., 574, E4-E4 (2019) · doi:10.1038/s41586-019-1583-7
[40] Fernández-Delgado, M.; Cernadas, E.; Barro, S.; Amorim, D., Do we need hundreds of classifiers to solve real world classification problems?, J. Mach. Learn. Res., 11, 015020 (2014) · Zbl 1319.62005 · doi:10.1117/1.JRS.11.015020
[41] Makridakis, S.; Spiliotis, E.; Assimakopoulos, V., Statistical and machine learning forecasting methods: concerns and ways forward, PLoS One, 13, e0194889 (2018) · doi:10.1371/journal.pone.0194889
[42] Limbeck, J., Lanz, F., Barbaro, E., Harris, C., Bisdom, K., Park, T., Oosterbosch, W., Jamali-Rad, H., Nevenzeel, K.: Evaluation of a Machine Learning methodology to forecast induced seismicity event rates within the Groningen Field, Assen, Netherlands (2018). https://nam-feitenencijfers.data-app.nl/download/rapport/d5be89f6-fcea-4237-bc07-6cda25e151d9?open=true. Accessed 31 Jan 2020
[43] Lanz, F., Bisdom, K., Barbaro, E., Limbeck, J., Park, T., Harris, C., Nevenzeel, K.: Evaluation of a Machine Learning methodology for spatiotemporal induced seismicity forecasts within the Groningen field, Assen, Netherlands (2019). https://nam-onderzoeksrapporten.data-app.nl/reports/download/groningen/en/e5535713-46e2-4523-a479-4124f674c55f. Accessed 31 Jan 2020
[44] R Core Team: R: A Language and Environment for Statistical Computing, https://www.r-project.org/, (2018)
[45] Wright, MN; Ziegler, A., Ranger : A Fast Implementation of Random Forests for High Dimensional Data in C++ and R, J. Stat. Softw., 77, 1-17 (2017) · doi:10.18637/jss.v077.i01
[46] CGAL Project: CGAL User and Reference Manual, (2018). https://www.cgal.org/
[47] Gärtner, B., Schönherr, S.: An efficient, exact, and generic quadratic programming solver for geometric optimization. Proceedings of the Sixteenth Annual Symposium on Computational Geometry - SCG ’00. ACM Press, New York, NY, USA, 110-118 (2000). doi:10.1145/336154.336191 · Zbl 1377.68277
[48] Bischl, B.; Lang, M.; Kotthoff, L.; Schiffner, J.; Richter, J.; Studerus, E.; Casalicchio, G.; Jones, ZM, mlr: Machine Learning in R, J. Mach. Learn. Res., 17, 1-5 (2016) · Zbl 1392.68007
[49] van Oeveren, H.; Valvatne, P.; Geurtsen, L.; van Elk, J., History match of the Groningen field dynamic reservoir model to subsidence data and conventional subsurface data, Neth. J. Geosci., 96, s47-s54 (2017) · doi:10.1017/njg.2017.26
[50] Bierman, S., Kraaijeveld, F., Bourne, S.: Regularised Direct Inversion to Compaction in the Groningen Reservoir Using Measurements from Optical Leveling Campaigns. Tech. Report. Shell Glob. Solut. Int. (2015). https://nam-feitenencijfers.data-app.nl/download/rapport/cc5ea278-c093-457b-b930-1869a3c26c21?open=true. Accessed 31 Jan 2020
[51] Burkitov, U., van Oeveren, H., Valvatne, P.: Groningen Field Review 2015 Subsurface Dynamic Modelling Report. (2016)
[52] Ministry of Economic Affairs and Climate Policy: Kamerbrief over gaswinning Groningen (2018) https://www.government.nl/documents/parliamentary-documents/2018/03/29/kamerbrief-over-gaswinning-groningen. Accessed 1 July 2019
[53] Rydelek, PA; Sacks, IS, Testing the completeness of earthquake catalogues and the hypothesis of self-similarity, Nature., 337, 251-253 (1989) · doi:10.1038/337251a0
[54] Dost, B., Goutbeek, F., van Eck, T., Kraaijpoel, D.: Monitoring Induced Seismicity in the North of the Netherlands: Status Report 2010, De Bilt, Netherlands (2012). KNMI report: http://bibliotheek.knmi.nl/knmipubWR/WR2012-03.pdf. Accessed 31 Jan 2018
[55] Bourne, SJ; Oates, SJ, Development of statistical geomechanical models for forecasting seismicity induced by gas production from the Groningen field, Geol. Mijnbouw/Neth. J. Geosci., 96, s175-s182 (2017) · doi:10.1017/njg.2017.35
[56] Nelder, JA; Wedderburn, RWM, Generalized linear models, J. R. Stat. Soc. Ser. A, 135, 370 (1972) · doi:10.2307/2344614
[57] López-Ibáñez, M.; Dubois-Lacoste, J.; Pérez Cáceres, L.; Birattari, M.; Stützle, T., The irace package: iterated racing for automatic algorithm configuration, Oper. Res. Perspect., 3, 43-58 (2016) · doi:10.1016/j.orp.2016.09.002
[58] Hu, LY; Huang, MW; Ke, SW; Tsai, CF, The distance function effect on k-nearest neighbor classification for medical datasets, Springerplus., 5, 1304 (2016) · doi:10.1186/s40064-016-2941-7
[59] Breiman, L.: Random Forrests. Mach. Learn. (2001)
[60] Hastie, T.; Tibshirani, R.; Friedman, J., The Elements of Statistical Learning (2009), New York: Springer New York, New York · Zbl 1273.62005 · doi:10.1007/978-0-387-84858-7
[61] Cortes, C.; Vapnik, V., Support-vector networks, Mach. Learn., 20, 273-297 (1995) · Zbl 0831.68098 · doi:10.1007/BF00994018
[62] Kursa, MB; Rudnicki, WR, Feature Selection with the Boruta Package, J. Stat. Softw., 36, i11 (2010) · doi:10.18637/jss.v036.i11
[63] Fagerland, MW; Sandvik, L., The Wilcoxon-Mann-Whitney test under scrutiny, Stat. Med., 28, 1487-1497 (2009) · doi:10.1002/sim.3561
[64] Schorlemmer, D.; Gerstenberger, MC; Wiemer, S.; Jackson, DD; Rhoades, DA, Earthquake likelihood model testing, Seismol. Res. Lett., 78, 17-29 (2007) · doi:10.1785/gssrl.78.1.17
[65] Gerstenberger, M., Rhoades, D., Stirlin, M., Brownrigg, R., Christophersen, A.: Continued Development of the New Zealand Earthquake Forecast Testing Centre. (2009). https://www.eqc.govt.nz/sites/public_files/3753-Development-NZ-EQ-Forecast-Centre.pdf. Accessed 31 July 2020
[66] Rhoades, DA; Schorlemmer, D.; Gerstenberger, MC; Christophersen, A.; Zechar, JD; Imoto, M., Efficient testing of earthquake forecasting models, Acta Geophys., 59, 728-747 (2011) · doi:10.2478/s11600-011-0013-5
[67] Bray, A.; Schoenberg, FP, Assessment of point process models for earthquake forecasting, Stat. Sci., 28, 510-520 (2013) · Zbl 1331.86016 · doi:10.1214/13-STS440
[68] Wood, SN; Pya, N.; Säfken, B., Smoothing parameter and model selection for general smooth models, J. Am. Stat. Assoc., 111, 1548-1563 (2016) · doi:10.1080/01621459.2016.1180986
[69] Karpatne, A.; Atluri, G.; Faghmous, JH; Steinbach, M.; Banerjee, A.; Ganguly, A.; Shekhar, S.; Samatova, N.; Kumar, V., Theory-guided data science: a new paradigm for scientific discovery from data, IEEE Trans. Knowl. Data Eng., 29, 2318-2331 (2017) · doi:10.1109/TKDE.2017.2720168
[70] Goldstein, A.; Kapelner, A.; Bleich, J.; Pitkin, E., Peeking inside the black box: visualizing statistical learning with plots of individual conditional expectation, J. Comput. Graph. Stat., 24, 44-65 (2015) · doi:10.1080/10618600.2014.907095
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.