×

Unimodal singularities and boundary divisors in the KSBA moduli of a class of Horikawa surfaces. (English) Zbl 1539.14063

The moduli space of stable surfaces, is a modular compactification of the Gieseker moduli space of canonical models of surfaces of general type. Unlike in the case of stable curves, the geometry of the surfaces parametrised by the boundary and the component structure of the boundary has remained elusive so far.
The authors consider the most popular test case, surfaces with \(K_X^2 =1\) and \(\chi(\mathcal O_X)=3\) and construct eight new divisors in the closure of the Gieseker component.
The general element in each of these divisors is constructed as follows: the authors write down explict degenerations to surfaces with an unimodal, non-log-canonical singularity and then construct the stable replacement via a weighted blow up. They also give a geometric description of the surfaces in the divisor in most cases.
The remaining geometric descriptions and a proof that these are the only divisors arising in this way was given in [S. Rollenske and D. Torres, “I-surfaces from surfaces with one exceptional unimodal point”, Preprint, arXiv:2305.01316].

MSC:

14J10 Families, moduli, classification: algebraic theory
14D06 Fibrations, degenerations in algebraic geometry
14E05 Rational and birational maps
14D07 Variation of Hodge structures (algebro-geometric aspects)

References:

[1] V.Alexeev, Moduli spaces \(M_{g,n}(W)\) for surfaces, Higher‐dimensional complex varieties (Trento, 1994), de Gruyter, Berlin, 1996, 1-22, https://doi.org/10.1006/jcat.1996.0357. · Zbl 0896.14014 · doi:10.1006/jcat.1996.0357
[2] V.Alexeev, Complete moduli in the presence of semiabelian group action, Ann. of Math. (2)155 (2002), no. 3, 611-708. · Zbl 1052.14017
[3] V.Alexeev, Moduli of weighted hyperplane arrangements, Advanced Courses in Mathematics. G.Bini (ed.), M.Lahoz (ed.), E.Macrì (ed.), and P.Stellari (ed.) (eds.), CRM Barcelona, Birkhäuser/Springer, Basel, 2015, pp. vii+104, https://doi.org/10.1007/978‐3‐0348‐0915‐3. · Zbl 1334.14001 · doi:10.1007/978‐3‐0348‐0915‐3
[4] V.Alexeev, A.Brunyate, and P.Engel, Compactifications of moduli of elliptic K3 surfaces: stable pair and toroidal, Geom. Topol.26 (2022), no. 8, 3525-3588. · Zbl 1524.14078
[5] V.Alexeev and P.Engel, Compact moduli of K3 surfaces, To appear in Annals of Mathematics 2021, arXiv:2101.12186.
[6] V.Alexeev and P.Engel, Mirror symmetric compactifications of moduli spaces of K3 surfaces with a nonsymplectic involution, 2022, arXiv:2208.10383.
[7] V.Alexeev, P.Engel, and C.Han, Compact moduli of K3 surfaces with a nonsymplectic automorphism, To appear in Transactions of the American Mathematical Society 2021, arXiv:2110.13834.
[8] V.Alexeev, P.Engel, and A.Thompson, Stable pair compactification of moduli of K3 surfaces of degree 2, J. Reine Angew. Math. (2023). https://doi.org/10.1515/crelle‐2023‐0011. · Zbl 1532.14068 · doi:10.1515/crelle‐2023‐0011
[9] V.Alexeev and R.Pardini, Non‐normal abelian covers, Compos. Math.148 (2012), no. 4, 1051-1084. https://doi.org/10.1112/S0010437X11007482. · Zbl 1263.14016 · doi:10.1112/S0010437X11007482
[10] V. I.Arnol’d, Local normal forms of functions, Invent. Math.35 (1976), 87-109. https://doi.org/10.1007/BF01390134. · Zbl 0336.57022 · doi:10.1007/BF01390134
[11] E.Artal Bartolo, J.Martín‐Morales, and J.Ortigas‐Galindo, Intersection theory on abelian‐quotient V‐surfaces and \(\bf Q\)‐resolutions, J. Singul.8 (2014), 11-30. URL https://doi.org/10.5427/jsing.2014.8b. · Zbl 1292.32011 · doi:10.5427/jsing.2014.8b
[12] J. W.Bruce and C. T. C.Wall, On the classification of cubic surfaces, J. Lond. Math. Soc.2 (1979), no. 2, 245-256. · Zbl 0393.14007
[13] L.Caporaso and F.Viviani, Torelli theorem for stable curves, J. Eur. Math. Soc. (JEMS)13 (2011), no. 5, 1289-1329. · Zbl 1230.14037
[14] J. A.Carlson, The one‐motif of an algebraic surface, Compositio Math.56 (1985), no. 3, 271-314. · Zbl 0629.14027
[15] J. I.Cogolludo‐Agustín, J.Martín‐Morales, and J.Ortigas‐Galindo, Local invariants on quotient singularities and a genus formula for weighted plane curves, Int. Math. Res. Not. IMRN (2014), no. 13, 3559-3581. · Zbl 1304.14034
[16] A.Corti, Adjunction of log divisors, Flips and abundance for algebraic threefolds. A summer seminar at the University of Utah, Salt Lake City, 1991, Paris: Société Mathématique de France, 1992, 171-182. · Zbl 0810.14003
[17] S.Coughlan, M.Franciosi, R.Pardini, J.Rana, and S.Rollenske, On T‐divisors and intersections in the moduli space of stable surfaces \(\overline{\mathfrak{M}}_{1,3} \), J. Lond. Math. Soc. (2)107 (2023), no. 2, 750-776. · Zbl 1519.14035
[18] S.Coughlan, M.Franciosi, R.Pardini, and S.Rollenske, Degeneration of Hodge structures on I‐surfaces, 2022, arXiv:2209.07150.
[19] D. A.Cox, J. B.Little, and H. K.Schenck, Toric varieties, Graduate Studies in Mathematics, vol. 124, American Mathematical Society, Providence, RI, 2011, pp. xxiv+841, URL https://doi.org/10.1090/gsm/124. · Zbl 1223.14001 · doi:10.1090/gsm/124
[20] M. A.deCataldo and L.Migliorini, The Hodge theory of maps, Hodge theory, Math. Notes, vol. 49, Princeton Univ. Press, Princeton, NJ, 2014, pp. 257-272. Lectures 1-3 by Migliorini. · Zbl 1321.14012
[21] P.Deligne, Théorie de Hodge. II, Inst. Hautes Études Sci. Publ. Math. (1971), no. 40, 5-57. · Zbl 0219.14007
[22] P.Deligne, Théorie de Hodge. III, Inst. Hautes Études Sci. Publ. Math. (1974), no. 44, 5-77. · Zbl 0237.14003
[23] A.Dimca, Singularities and topology of hypersurfaces, Universitext, Springer‐Verlag, New York, 1992, pp. xvi+263, https://doi.org/10.1007/978‐1‐4612‐4404‐2. · Zbl 0753.57001 · doi:10.1007/978‐1‐4612‐4404‐2
[24] A. H.Durfee, A naive guide to mixed Hodge theory, Kyoto University Research Information Repository, 1981, pp. 48-63. http://hdl.handle.net/2433/102472.
[25] F.Enriques, Le superficie algebriche, Nicola Zanichelli, Bologna, 1949, pp. xv+464. · Zbl 0036.37102
[26] M.Franciosi, R.Pardini, and S.Rollenske, Gorenstein stable surfaces with \(K^2_X=1\) and \(p_g>0\), Math. Nachr.290 (2017), no. 5‐6, 794-814. https://doi.org/10.1002/mana.201600090. · Zbl 1388.14104 · doi:10.1002/mana.201600090
[27] M. Franciosi et al.I‐surfaces with one T‐singularity, Boll. Unione Mat. Ital.15 (2022), no. 1‐2, 173-190. · Zbl 1504.14068
[28] P.Gallardo, M.Kerr, and L.Schaffler, Geometric interpretation of toroidal compactifications of moduli of points in the line and cubic surfaces, Adv. Math.381 (2021), Paper No. 107632, 48. https://doi.org/10.1016/j.aim.2021.107632. · Zbl 1466.14044 · doi:10.1016/j.aim.2021.107632
[29] N.Giansiracusa and W. D.Gillam, On Kapranov’s description of \(\overline{M}_{0,n}\) as a Chow quotient, Turkish J. Math.38 (2014), no. 4, 625-648. https://doi.org/10.3906/mat‐1306‐17. · Zbl 1306.14010 · doi:10.3906/mat‐1306‐17
[30] D.Gieseker, Global moduli for surfaces of general type, Invent. Math.43 (1977), no. 3, 233-282. https://doi.org/10.1007/BF01390081. · Zbl 0389.14006 · doi:10.1007/BF01390081
[31] D. R.Grayson and M. E.Stillman, Macaulay2, a software system for research in algebraic geometry, http://www2.macaulay2.com/Macaulay2/Citing/.
[32] M.Green et al., Period mappings and ampleness of the Hodge line bundle, 2017, arXiv:1708.09523.
[33] G.‐M.Greuel, C.Lossen, and E. I.Shustin, Introduction to singularities and deformations, Springer Monographs in Mathematics Springer, Berlin, 2007, pp. xii+471. · Zbl 1125.32013
[34] P.Hacking, Compact moduli spaces of surfaces and exceptional vector bundles, compactifying moduli spaces, Adv. Courses Math. CRM Barcelona, Birkhäuser/Springer, Basel, 2016, pp. 41-67. · Zbl 1371.14037
[35] P.Hacking, S.Keel, and J.Tevelev, Stable pair, tropical, and log canonical compactifications of moduli spaces of del Pezzo surfaces, Invent. Math.178 (2009), no. 1, 173-227. · Zbl 1205.14012
[36] B.Hassett, Local stable reduction of plane curve singularities, J. Reine Angew. Math.520 (2000), 169-194. https://doi.org/10.1515/crll.2000.020. · Zbl 0962.14019 · doi:10.1515/crll.2000.020
[37] E.Horikawa, Algebraic surfaces of general type with small \(c^2_1\). II, Invent. Math.37 (1976), no. 2, 121-155. https://doi.org/10.1007/BF01418966. · Zbl 0339.14025 · doi:10.1007/BF01418966
[38] A. R.Iano‐Fletcher, Working with weighted complete intersections, explicit birational geometry of 3‐folds, London Math. Soc. Lecture Note Ser., vol. 281, Cambridge Univ. Press, Cambridge, 2000, pp. 101-173. · Zbl 0960.14027
[39] S.Ishii, The quotients of log‐canonical singularities by finite groups, singularities‐apporo 1998, Adv. Stud. Pure Math., vol. 29, Kinokuniya, Tokyo, 2000, pp. 135-161, https://doi.org/10.2969/aspm/02910135. · Zbl 1077.14539 · doi:10.2969/aspm/02910135
[40] K.Kato and S.Usui, Classifying spaces of degenerating polarized Hodge structures, Ann. of Math. Stud.169 (2009), xii+336. https://doi.org/10.1515/9781400837113. · Zbl 1172.14002 · doi:10.1515/9781400837113
[41] M.Kerr, R.Laza, and M.Saito, Hodge theory of degenerations, (I): consequences of the decomposition theorem, Selecta Math. (N.S.)27 (2021), no. 4, Paper No. 71, 48. https://doi.org/10.1007/s00029‐021‐00675‐w. · Zbl 1478.14024 · doi:10.1007/s00029‐021‐00675‐w
[42] J.Kollár, Singularities of the minimal model program, Cambridge Tracts in Mathematics, vol. 200, Cambridge University Press, Cambridge, 2013, pp. x+370, https://doi.org/10.1017/CBO9781139547895, with a collaboration of Sándor Kovács. · Zbl 1282.14028 · doi:10.1017/CBO9781139547895
[43] J.Kollár, Families of varieties of general type, Cambridge Tracts in Mathematics, vol. 231, Cambridge University Press, Cambridge, 2023, pp. xviii+471. · Zbl 07658187
[44] J.Kollár and S.Mori, Birational geometry of algebraic varieties, Cambridge Tracts in Mathematics, vol. 134, Cambridge University Press, Cambridge, 1998, pp. viii+254, https://doi.org/10.1017/CBO9780511662560. With the collaboration of C. H. Clemens and A. Corti, Translated from the 1998 Japanese original. · Zbl 0926.14003 · doi:10.1017/CBO9780511662560
[45] J.Kollár and N. I.Shepherd‐Barron, Threefolds and deformations of surface singularities, Invent. Math.91 (1988), no. 2, 299-338. URL https://doi.org/10.1007/BF01389370. · Zbl 0642.14008 · doi:10.1007/BF01389370
[46] J.Kollár, K. E.Smith, and A.Corti, Rational and nearly rational varieties, Cambridge Studies in Advanced Mathematics, vol. 92, Cambridge University Press, Cambridge, 2004, pp. vi+235, https://doi.org/10.1017/CBO9780511734991. · Zbl 1060.14073 · doi:10.1017/CBO9780511734991
[47] R.Laza, The moduli space of cubic fourfolds via the period map, Ann. of Math. (2)172 (2010), no. 1, 673-711. · Zbl 1201.14026
[48] A.Leykin and R.Krone, NumericalAlgebraicGeometry: A Macaulay2 package. Version 1.17, A Macaulay2 package. https://github.com/Macaulay2/M2/tree/master/M2/Macaulay2/packages.
[49] W.Liu and S.Rollenske, Two‐dimensional semi‐log‐canonical hypersurfaces, Matematiche (Catania)67 (2012), no. 2, 185-202. https://doi.org/10.4418/2012.67.2.14. · Zbl 1262.32031 · doi:10.4418/2012.67.2.14
[50] H.‐B.Moon and L.Schaffler, KSBA compactification of the moduli space of K3 surfaces with a purely non‐symplectic automorphism of order four, Proc. Edinb. Math. Soc. (2)64 (2021), no. 1, 99-127. https://doi.org/10.1017/S001309152100002X. · Zbl 1470.14069 · doi:10.1017/S001309152100002X
[51] D. R.Morrison, The Clemens‐Schmid exact sequence and applications, Topics in transcendental algebraic geometry (Princeton, N.J., 1981/1982), Ann. of Math. Stud. 106 (1984), 101-119. · Zbl 0576.32034
[52] S.Mukai, An introduction to invariants and moduli, Cambridge Studies in Advanced Mathematics, vol. 81, Cambridge University Press, Cambridge, 2003, pp. xx+503, Translated from the 1998 and 2000 Japanese editions by W. M. Oxbury. · Zbl 1033.14008
[53] C. A. M.Peters and J. H. M.Steenbrink, Mixed Hodge structures, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics], vol. 52, Springer‐Verlag, Berlin, 2008, pp. xiv+470. · Zbl 1138.14002
[54] J.Rana and G.Urzúa, Optimal bounds for T‐singularities in stable surfaces, Adv. Math.345 (2019), 814-844. · Zbl 1474.14057
[55] M.Reid, Canonical 3‐folds, Journées de Géometrie Algébrique d’Angers, Juillet 1979/Algebraic Geometry, Angers, 1979, Sijthoff & Noordhoff, Alphen aan den Rijn—Germantown, Md., 1980, pp. 273-310. · Zbl 0451.14014
[56] W.Schmid, Variation of Hodge structure: the singularities of the period mapping, Invent. Math.22 (1973), 211-319. https://doi.org/10.1007/BF01389674. · Zbl 0278.14003 · doi:10.1007/BF01389674
[57] T.Shioda, K3 surfaces and sphere packings, J. Math. Soc. Japan60 (2008), no. 4, 1083-1105. http://projecteuclid.org/euclid.jmsj/1225894034. · Zbl 1178.14038
[58] G.Staglianò, Resultants: resultants, discriminants, and Chow forms. Version 1.2.2, A Macaulay2 package. https://github.com/Macaulay2/M2/tree/master/M2/Macaulay2/packages.
[59] S.Takayama, Local simple connectedness of resolutions of log‐terminal singularities, Internat. J. Math.14 (2003), no. 8, 825-836. · Zbl 1058.14024
[60] The Sage Developers, SageMath, the sage mathematics software system (version 9.4), 2022. https://www.sagemath.org.
[61] D.Wen, Moduli of canonical surfaces of general type with \(K_S^2=1, p_g=2\), 2021, arXiv:2103.12990.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.