×

The maximum \(L_q\)-likelihood method: an application to extreme quantile estimation in finance. (English) Zbl 1293.62064

Summary: Estimating financial risk is a critical issue for banks and insurance companies. Recently, quantile estimation based on extreme value theory (EVT) has found a successful domain of application in such a context, outperforming other methods. Given a parametric model provided by EVT, a natural approach is maximum likelihood estimation. Although the resulting estimator is asymptotically efficient, often the number of observations available to estimate the parameters of the EVT models is too small to make the large sample property trustworthy. In this paper, we study a new estimator of the parameters, the maximum \(L_q\)-likelihood estimator (ML\(q\)E), introduced by D. Ferrari and Y. Yang [“Estimation of tail probability via the maximum \(L_q\)-likelihood method”, Technical Report 659, School of Statistics, University of Minnesota (2007)]. We show that the ML\(q\)E outperforms the standard MLE, when estimating tail probabilities and quantiles of the generalized extreme value (GEV) and the generalized Pareto (GP) distributions. First, we assess the relative efficiency between the ML\(q\)E and the MLE for various sample sizes, using Monte Carlo simulations. Second, we analyze the performance of the ML\(q\)E for extreme quantile estimation using real-world financial data. The ML\(q\)E is characterized by a distortion parameter \(q\) and extends the traditional log-likelihood maximization procedure. When \(q\to 1\), the new estimator approaches the traditional maximum likelihood estimator (MLE), recovering its desirable asymptotic properties; when \(q\neq 1\) and the sample size is moderate or small, the ML\(q\)E successfully trades bias for variance, resulting in an overall gain in terms of accuracy (mean squared error).

MSC:

62F99 Parametric inference
62G32 Statistics of extreme values; tail inference
62P05 Applications of statistics to actuarial sciences and financial mathematics
91G70 Statistical methods; risk measures

Software:

R; ElemStatLearn; POT; evir; QRM
Full Text: DOI

References:

[1] P. Artzner, F. Delbaen, J. M. Eber, and D. Heath, ”Coherent measures of risk,” Mathematical Finance vol. 9 pp. 203–228, 1999. · Zbl 0980.91042 · doi:10.1111/1467-9965.00068
[2] A. A. Balkema and L. de Haan, ”Residual life time at great age,” The Annals of Probability vol. 2 pp. 792–804, 1974. · Zbl 0295.60014 · doi:10.1214/aop/1176996548
[3] C. Brooks, J. Clare, J. Dalla Molle, and G. Persand, ”A comparison of extreme value theory approaches for determining value at risk,” Journal of Empirical Finance vol. 22 pp. 1–22, 2005.
[4] E. Castillo, J. María, and A. S. Hadi, ”Fitting continuous bivariate distributions to data,” The Statistician: Journal of the Institute of Statisticians vol. 46 pp. 355–369, 1997.
[5] R. Cont, ”Empirical properties of asset returns: stylized facts and statistical issues,” Quantitative Finance vol. 1(2) pp. 223–236, 2001. · doi:10.1080/713665670
[6] P. Embrechts, C. Kluppelberg, and T. Mikosch, Modelling Extremal Events for Insurance and Finance, Applications of Mathematics, Springer, 1997. · Zbl 0873.62116
[7] T. S. Ferguson, A Course in Large Sample Theory, Chapman & Hall Ltd, 1996. · Zbl 0871.62002
[8] D. Ferrari and Y. Yang, ”Estimation of tail probability via the maximum Lq-likelihood method,” Technical Report 659, School of Statistics, University of Minnesota, 2007. http://www.stat.umn.edu/\(\sim\)dferrari/research/techrep659.pdf .
[9] R. Fisher and L. C. Tippett, ”Limiting forms of the frequency distribution of largest or smallest member of a sample,” Proceedings of the Cambridge philosophical society vol. 24 pp. 180–190, 1928. · JFM 54.0560.05 · doi:10.1017/S0305004100015681
[10] M. Gell-Mann (ed.), Nonextensive Entropy, Interdisciplinary Applications, Oxford University Press: New York, 2004. · Zbl 1127.82004
[11] M. Gilli and E. Kellezi, ”An application of extreme value theory for measuring financial risk,” Computational Economics vol. 2–3 pp. 207–228, 2006. · Zbl 1153.91498 · doi:10.1007/s10614-006-9025-7
[12] G. H. Givens and J. A. Hoeting, Computational Statistics, Wiley: New Jersey, 2005. · Zbl 1079.62001
[13] B. V. Gnedenko, ”Sur la distribution limite du terme d’une serie aleatoire,” Annals of Mathematics vol. 44 pp. 423–453, 1943. · Zbl 0063.01643 · doi:10.2307/1968974
[14] S. D. Grimshaw, ”Computing maximum likelihood estimates for the generalized Pareto distribution,” Technometrics vol. 35 pp. 185–191, 1993. · Zbl 0775.62054 · doi:10.1080/00401706.1993.10485040
[15] T. Hastie, R. Tibshirani, and J. H. Friedman, The Elements of Statistical Learning: Data Mining, Inference, and Prediction: With 200 Full-color Illustrations, Springer-Verlag Inc., 2001. · Zbl 0973.62007
[16] J. Havrda and F. Charvát, ”Quantification method of classification processes: Concept of structural entropy,” Kibernetika vol. 3 pp. 30–35, 1967. · Zbl 0178.22401
[17] J. R. M. Hosking and J. R. Wallis, ”Parameter and quantile estimation for the generalized Pareto distribution,” Technometrics vol. 29 pp. 339–349, 1987. · Zbl 0628.62019 · doi:10.1080/00401706.1987.10488243
[18] P. J. Huber, Robust Statistics, Wiley Series in Probability, John Wiley and Sons, 1981. · Zbl 0536.62025
[19] A. F. Jenkinson, ”The frequency distribution of the annual maximum (minimum) values of meteorological events,” Quarterly Journal of the Royal Meteorological Society vol. 81 pp. 158–172, 1955. · doi:10.1002/qj.49708134804
[20] J. Knight, S. Satchell, and G. Wang, ”Quantitative finance,” vol. 3 pp. 332–344, 2005.
[21] K. Kuester, S. Mittnik, and M. Paolella, ”Value-at-risk prediction: A comparison of alternative strategies,” Journal of Financial Econometrics vol. 4(1) pp. 53–89, 2006. · doi:10.1093/jjfinec/nbj002
[22] N. A. Lazar, Statistics of Extremes: Theory and Applications, Wiley: England, 2004. · Zbl 1161.74320
[23] A. McNeil and R. Frey, ”Estimation of tail-related risk measures for heteroskedastic financial time series: an extreme value approach,” Journal of Empirical Finance vol. 7 pp. 271–300, 2000. · doi:10.1016/S0927-5398(00)00012-8
[24] A. McNeil and A. Stephenson, evir: Extreme Values in R, 2007. http://www.maths.lancs.ac.uk/\(\sim\)stephena/ . R package version 1.5. S original (EVIS) by Alexander McNeil and R port by Alec Stephenson.
[25] A. McNeil, R. Frey, and P. Embrechts, Quantitative Risk Management: Concepts, Techniques and Tools, Princeton Series in Finance: New Jersey, 2005. · Zbl 1089.91037
[26] R Development Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria, 2006. http://www.R-project.org .
[27] R. Reiss and M. Thomas, Statistical Analysis of Extreme Values with Applications to Insurance, Finance, Hydrology and Other Fields, Birkhauser Verlag: Basel, 1997. · Zbl 0880.62002
[28] M. A. Ribatet, A users guide to the pot package (version 1.0), 2006. http://cran.r-project.org .
[29] A. van der Vaart, Asymptotic Statistics, Cambridge University Press: New York, 1998. · Zbl 0910.62001
[30] R. von Mises, La distribution de la plus grande de n valeurs, in selected papers, volume II, vol. 44 of American Mathematical Society, Providence, RI, 1954.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.