×

A new generalized Gronwall inequality with a double singularity and its applications to fractional stochastic differential equations. (English) Zbl 1472.34011

This paper focuses primarily on a new generalized Gronwall inequality with a double singularity and its applications to fractional stochastic differential equations
The first few pages introduce all the necessary notation and terminology to understand the paper: the theory of operators and ingenious techniques to investigate the well-posedness of mild solution to semilinear fractional stochastic differential equations is discussed.
The main results are presented in Section 3 (Generalized Gronwall inequalities with weakly singular kernels) with the help of Theorem 3.1 and 3.2. In Section 4, the properties and integral inequalities obtained in Section 3 to discuss the well-posedness of semilinear fractional stochastic differential equations are studied.

MSC:

34A08 Fractional ordinary differential equations
34F05 Ordinary differential equations and systems with randomness
60H10 Stochastic ordinary differential equations (aspects of stochastic analysis)
26D10 Inequalities involving derivatives and differential and integral operators
Full Text: DOI

References:

[1] Delbosco, D.; Rodino, L., Existence and uniqueness for a nonlinear fractional differential equation, J. Math. Anal. Appl., 204, 2, 609-625 (1996) · Zbl 0881.34005 · doi:10.1006/jmaa.1996.0456
[2] Chen, A. P.; Chen, F. L.; Deng, S. Q., On almost automorphic mild solutions for fractional semilinear initial value problems, Comput. Math. Appl., 59, 3, 1318-1325 (2010) · Zbl 1189.34079 · doi:10.1016/j.camwa.2009.07.001
[3] Li, Y.; Chen, Y. Q.; Podlubny, I., Stability of fractional-order nonlinear dynamic systems: Lyapunov direct method and generalized Mittag-Leffler stability, Comput. Math. Appl., 59, 5, 1810-1821 (2010) · Zbl 1189.34015 · doi:10.1016/j.camwa.2009.08.019
[4] Rakkiyappan, R.; Velmurugan, G.; Cao, J. D., Stability analysis of fractional-order complex-valued neural networks with time delays, Chaos Solit. Fract., 78, 297-316 (2015) · Zbl 1353.34098 · doi:10.1016/j.chaos.2015.08.003
[5] Wu, A. L.; Liu, L.; Huang, T. W.; Zeng, Z. G., Mittag-Leffler stability of fractional-order neural networks in the presence of generalized piecewise constant arguments, Neural Netw., 85, 118-127 (2017) · Zbl 1432.34102 · doi:10.1016/j.neunet.2016.10.002
[6] Gronwall, T. H., Note on the derivatives with respect to a parameter of the solutions of a system of differential equations, Ann. Math., 20, 4, 292-296 (1919) · JFM 47.0399.02 · doi:10.2307/1967124
[7] Ye, H. P.; Gao, J. M.; Ding, Y. S., A generalized Gronwall inequality and its application to a fractional differential equation, J. Math. Anal. Appl., 328, 2, 1075-1081 (2007) · Zbl 1120.26003 · doi:10.1016/j.jmaa.2006.05.061
[8] Ding, X. L.; Jiang, Y. L., Semilinear fractional differential equations based on a new integral operator approach, Commun. Nonlinear Sci. Numer. Simul., 17, 12, 5143-5150 (2012) · Zbl 1263.35215 · doi:10.1016/j.cnsns.2012.03.036
[9] Q, W., A new type of the Gronwall-Bellman inequality and its application to fractional stochastic differential equations, Cogent Math., 4, 1279781 (2017) · Zbl 1438.26105
[10] Webb, J. R. L., Weakly singular Gronwall inequalities and applications to fractional differential equations, J. Math. Anal. Appl., 471, 2, 692-711 (2019) · Zbl 1404.26022 · doi:10.1016/j.jmaa.2018.11.004
[11] Medved, M., A new approach to an analysis of Henry type integral inequalities and their Bihari type versions, J. Math. Anal. Appl., 214, 349-366 (1997) · Zbl 0893.26006
[12] Lakshmikantham, V.; Vatsala, A. S., Theory of fractional differential inequalities and applications, Commun. Appl. Anal., 11, 395-402 (2007) · Zbl 1159.34006
[13] Denton, Z.; Vatsala, A. S., Fractional integral inequalities and applications, Comput. Math. Appl., 59, 3, 1087-1094 (2010) · Zbl 1189.26044 · doi:10.1016/j.camwa.2009.05.012
[14] Ye, H. P.; Gao, J. M., Henry-Gronwall type retarded integral inequalities and their applications to fractional differential equations with delay, Appl. Math. Comput., 218, 4152-4160 (2011) · Zbl 1247.26043 · doi:10.1016/j.amc.2011.09.046
[15] Nieto, J. J., Maximum principles for fractional differential equations derived from Mittag-Leffler functions, Appl. Math. Lett., 23, 10, 1248-1251 (2010) · Zbl 1202.34019 · doi:10.1016/j.aml.2010.06.007
[16] Ferreira, R. A. C., A discrete fractional Gronwall inequality, Proc. Amer. Math. Soc., 140, 5, 1605-1612 (2012) · Zbl 1243.26012 · doi:10.1090/S0002-9939-2012-11533-3
[17] Kong, Q. X.; Ding, X. L., A new fractional integral inequality with singularity and its application, Abstr. Appl. Anal., 2012, 1 (2012) · Zbl 1246.26018 · doi:10.1155/2012/937908
[18] Arnold, L., Stochastic Differential Equations: Theory and Applications (1974), New York: Wiley · Zbl 0278.60039
[19] Ladde, G. S.; Wu, L., Development of nonlinear stochastic models by using stock price data and basic statistics, Neutral Parallel Sci. Comput., 18, 269-282 (2010) · Zbl 1216.91038
[20] Nguyen Tien, D., Fractional stochastic differential equations with applications to finance, J. Math. Anal. Appl., 397, 1, 334-348 (2013) · Zbl 1255.60100 · doi:10.1016/j.jmaa.2012.07.062
[21] Farhadi, A.; Erjaee, G. H.; Salehi, M., Derivation of a new Merton’s optimal problem presented by fractional stochastic stock price and its applications, Comput. Math. Appl., 73, 9, 2066-2075 (2017) · Zbl 1372.91095 · doi:10.1016/j.camwa.2017.02.031
[22] Pedjeu, J.-C.; Ladde, G. S., Stochastic fractional differential equations: Modeling, method and analysis, Chaos Solit. Fract., 45, 3, 279-293 (2012) · Zbl 1282.60058 · doi:10.1016/j.chaos.2011.12.009
[23] Ding, X. L.; Nieto, J. J., Analytical solutions for multi-time scale fractional stochastic differential equations driven by fractional Brownian motion and their applications, Entropy., 20, 1, 63 (2018) · doi:10.3390/e20010063
[24] Zou, G. A., A Galerkin finite element method for time-fractional stochastic heat equation, Comput. Math. Appl., 75, 11, 4135-4150 (2018) · Zbl 1419.65077 · doi:10.1016/j.camwa.2018.03.019
[25] Asgari, Z.; Hosseini, S. M., Efficient numerical schemes for the solution of generalized time fractional burgers type equations, Numer. Algor., 77, 3, 763-792 (2018) · Zbl 1394.65106 · doi:10.1007/s11075-017-0339-4
[26] Zou, G. A.; Wang, B.; Zhou, Y., Existence and regularity of mild solutions to fractional stochastic evolution equations, Math. Model. Nat. Phenom., 13, 1, 15 (2018) · Zbl 1405.60102 · doi:10.1051/mmnp/2018004
[27] Taheri, Z.; Javadi, S.; Babolian, E., Numerical solution of stochastic fractional integro-differential equation by the spectral collocation method, J. Comput. Appl. Math., 321, 336-347 (2017) · Zbl 1366.65006 · doi:10.1016/j.cam.2017.02.027
[28] Li, Y. J.; Wang, Y. J.; Deng, W. H., Galerkin finite element approximations for stochastic space-time fractional wave equations, SIAM J. Numer. Anal., 55, 6, 3173-3202 (2017) · Zbl 1380.65017 · doi:10.1137/16M1096451
[29] Zhou, W. N.; Zhou, X. H.; Yang, J.; Zhou, J.; Tong, D. B., Stability analysis and application for delayed neural networks driven by fractional Brownian noise, IEEE Trans. Neural Netw. Learn. Syst., 29, 5, 1491-1502 (2018) · doi:10.1109/TNNLS.2017.2674692
[30] Podlubny, I., Fractional Differential Equations (1999), New York: Academic Press, New York · Zbl 0918.34010
[31] Kilbas, A. A.; Srivastava, H. M.; Trujillo, J. J., Theory and Applications of Fractional Differential Equations, North-Holland Mathematics Studies, 204 (2006), Amsterdam: Elsevier Science B. V, Amsterdam · Zbl 1092.45003
[32] Mainardi, F., Fractional Calculus and Waves in Linear Viscoelasticity (2010), London: Imperial College Press, London · Zbl 1210.26004
[33] Jiang, Y. L.; Ding, X. L., Nonnegative solutions of fractional functional differential equations, Comput. Math. Appl., 63, 5, 896-904 (2012) · Zbl 1247.34007 · doi:10.1016/j.camwa.2011.11.055
[34] Li, K. X., Stochastic delay fractional evolution equations driven by fractional Brownian motion, Math. Methods Appl. Sci., 38, 8, 1582-1591 (2015) · Zbl 1356.60103 · doi:10.1002/mma.3169
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.