×

A diagrammatic view of differential equations in physics. (English) Zbl 07817671

Summary: Presenting systems of differential equations in the form of diagrams has become common in certain parts of physics, especially electromagnetism and computational physics. In this work, we aim to put such use of diagrams on a firm mathematical footing, while also systematizing a broadly applicable framework to reason formally about systems of equations and their solutions. Our main mathematical tools are category-theoretic diagrams, which are well known, and morphisms between diagrams, which have been less appreciated. As an application of the diagrammatic framework, we show how complex, multiphysical systems can be modularly constructed from basic physical principles. A wealth of examples, drawn from electromagnetism, transport phenomena, fluid mechanics, and other fields, is included.

MSC:

81P68 Quantum computation
58A15 Exterior differential systems (Cartan theory)
18A10 Graphs, diagram schemes, precategories
78A30 Electro- and magnetostatics
14A10 Varieties and morphisms
82C70 Transport processes in time-dependent statistical mechanics

References:

[1] R. Abraham, J. E. Marsden, T. Ratiu, Manifolds, tensor analysis, and applications, 2 Eds., New York, NY: Springer, 1988. http://doi.org/10.1007/978-1-4612-1029-0 · Zbl 0875.58002
[2] P. Alotto, F. Freschi, M. Repetto, Multiphysics problems via the cell method: The role of Tonti diagrams, IEEE Trans. Magn., 46 (2010), 2959-2962. http://doi.org/10.1109/TMAG.2010.2044487 · doi:10.1109/TMAG.2010.2044487
[3] M. Arkowitz, Introduction to homotopy theory, New York, NY: Springer, 2011. http://doi.org/10.1007/978-1-4419-7329-0 · Zbl 1232.55001
[4] J. Baez, J. P. Muniain, Gauge fields, knots and gravity, World Scientific, 1994. https://doi.org/10.1142/2324 · Zbl 0843.57001
[5] J. Baez, M. Stay, Physics, topology, logic and computation: a Rosetta Stone, In: New structures for physics, Berlin, Heidelberg: Springer, 2010, 95-172. http://doi.org/10.1007/978-3-642-12821-9_2 · Zbl 1218.81008
[6] J. C. Baez, K. Courser, Structured cospans, Theor. Appl. Categ., 35 (2020), 1771-1822. · Zbl 1451.18008
[7] J. C. Baez, F. Genovese, J. Master, M. Shulman, Categories of nets, In: 2021 36th Annual ACM/IEEE Symposium on Logic in Computer Science (LICS), IEEE, 2021, 1-13. http://doi.org/10.1109/LICS52264.2021.9470566
[8] J. C. Baez, D. Weisbart, A. M. Yassine, Open systems in classical mechanics, J. Math. Phys., 62 (2021), 042902. http://doi.org/10.1063/5.0029885 · Zbl 1474.18008 · doi:10.1063/5.0029885
[9] W. Barham, P. J. Morrison, E. Sonnendrücker, A Hamiltonian model for the macroscopic Maxwell equations using exterior calculus, 2021, arXiv: 2108.07382.
[10] A. Bossavit, A rationale for ’edge-elements’ in 3-D fields computations, IEEE Trans. Magn., 24 (1988), 74-79. http://doi.org/10.1109/20.43860 · doi:10.1109/20.43860
[11] A. Bossavit, On the geometry of electromagnetism (4): Maxwell’s house, J. Japan Soc. Appl. Electromagn. & Mech, 6 (1998), 318-326.
[12] R. Bott, L. W. Tu, Differential forms in algebraic topology, New York, NY: Springer, 1982. http://doi.org/10.1007/978-1-4757-3951-0 · Zbl 0496.55001
[13] P. Boyland, Fluid mechanics and mathematical structures, In: An introduction to the geometry and topology of fluid flows, Dordrecht: Springer, 2001, 105-134. http://doi.org/10.1007/978-94-010-0446-6_6 · Zbl 1100.37508
[14] G. E. Bredon, Sheaf theory, 2 Eds., New York, NY: Springer, 1997. http://doi.org/10.1007/978-1-4612-0647-7 · Zbl 0874.55001
[15] W. L. Burke, Applied differential geometry, Cambridge University Press, 1985. http://doi.org/10.1017/CBO9781139171786 · Zbl 0572.53043
[16] Q. Chen, Z. Qin, R. Temam, Treatment of incompatible initial and boundary data for parabolic equations in higher dimension, Math. Comput., 80 (2011), 2071-2096. http://doi.org/10.1090/S0025-5718-2011-02469-5 · Zbl 1225.35012 · doi:10.1090/S0025-5718-2011-02469-5
[17] B. Coecke, E. O. Paquette, Categories for the practising physicist, In: New structures for physics, Berlin, Heidelberg: Springer, 2010, 173-286. http://doi.org/10.1007/978-3-642-12821-9_3 · Zbl 1253.81009
[18] I. Cortes Garcia, S. Schöps, H. De Gersem, S. Baumanns, Systems of differential algebraic equations in computational electromagnetics, In: Applications of differential-algebraic equations: examples and benchmarks, Cham: Springer, 2018, 123-169. http://doi.org/10.1007/11221_2018_8 · Zbl 1444.78001
[19] J. Crank, The mathematics of diffusion, 2 Eds., Oxford University Press, 1975. · Zbl 0315.76051
[20] M. Desbrun, A. N. Hirani, M. Leok, J. E. Marsden, Discrete exterior calculus, 2005, arXiv: math/0508341.
[21] G. A. Deschamps, Electromagnetics and differential forms, Proc. IEEE, 69 (1981), 676-696. http://doi.org/10.1109/PROC.1981.12048 · doi:10.1109/PROC.1981.12048
[22] M. J. Dupré, S. I. Rosencrans, Classical and relativistic vorticity in a semi-Riemannian manifold, J. Math. Phys., 19 (1978), 1532-1535. http://doi.org/10.1063/1.523861 · Zbl 0426.76099 · doi:10.1063/1.523861
[23] S. Eilenberg, S. Mac Lane, General theory of natural equivalences, Trans. Amer. Math. Soc., 58 (1945), 231-294. http://doi.org/10.1090/S0002-9947-1945-0013131-6 · Zbl 0061.09204 · doi:10.1090/S0002-9947-1945-0013131-6
[24] B. Farkas, S.-A. Wegner, Variations on barbălat’s lemma, The American Mathematical Monthly, 123 (2016), 825-830. http://doi.org/10.4169/amer.math.monthly.123.8.825 · Zbl 1391.26005 · doi:10.4169/amer.math.monthly.123.8.825
[25] P. C. Fife, Mathematical aspects of reacting and diffusing systems, Berlin, Heidelberg: Springer, 1979. http://doi.org/10.1007/978-3-642-93111-6 · Zbl 0403.92004
[26] B. Fong, Decorated cospans, Theor. Appl. Categ., 30 (2015), 1096-1120. · Zbl 1351.18003
[27] B. Fong, D. I. Spivak, Hypergraph categories, J. Pure Appl. Algebra, 223 (2019), 4746-4777. http://doi.org/10.1016/j.jpaa.2019.02.014 · Zbl 1422.18010 · doi:10.1016/j.jpaa.2019.02.014
[28] P. Gabriel, M. Zisman, Calculus of fractions and homotopy theory, Berlin, Heidelberg: Springer, 1967. http://doi.org/10.1007/978-3-642-85844-4 · Zbl 0186.56802
[29] A. Grigor’yan, Introduction to analysis on graphs, American Mathematical Society, 2018. · Zbl 1416.05002
[30] P. W. Gross, P. R. Kotiuga, Electromagnetic theory and computation: a topological approach, Cambridge University Press, 2004. http://doi.org/10.1017/CBO9780511756337 · Zbl 1096.78001
[31] R. Guitart, Sur le foncteur diagrammes, Cahiers de Topologie et Géométrie Différentielle Catégoriques, 14 (1973), 181-182.
[32] R. Guitart, Remarques sur les machines et les structures, Cahiers de Topologie et Géométrie Différentielle Catégoriques, 15 (1974), 113-144. · Zbl 0319.18003
[33] R. Guitart, L. Van den Bril, Décompositions et lax-complétions, Cahiers de Topologie et Géométrie Différentielle Catégoriques, 18 (1977), 333-407. · Zbl 0381.18012
[34] S. Gürer, P. Iglesias-Zemmour, Differential forms on manifolds with boundary and corners, Indagat. Math., 30 (2019), 920-929. http://doi.org/10.1016/j.indag.2019.07.004 · Zbl 1425.58002 · doi:10.1016/j.indag.2019.07.004
[35] H. Halvorson, D. Tsementzis, Categories of scientific theories, In: Categories for the working philosopher, Oxford University Press, 2017, 402-429. http://doi.org/10.1093/oso/9780198748991.003.0017 · Zbl 1498.00030
[36] A. N. Hirani, Discrete exterior calculus, PhD thesis, California Institute of Technology, 2003.
[37] N. Johnson, D. Yau, Bimonoidal categories, \(E_n\)-monoidal categories, and algebraic \(K\)-theory, 2021. Available from: https://nilesjohnson.net/drafts/Johnson_Yau_ring_categories.pdf.
[38] P. T. Johnstone, Fibrations and partial products in a 2-category, Appl. Categor. Struct., 1 (1993), 141-179. http://doi.org/10.1007/BF00880041 · Zbl 0803.18003 · doi:10.1007/BF00880041
[39] P. T. Johnstone, Sketches of an elephant: A topos theory compendium, Oxford University Press, 2002. · Zbl 1071.18001
[40] M. Kashiwara, P. Schapira, Categories and sheaves, Berlin, Heidelberg: Springer, 2006. http://doi.org/10.1007/3-540-27950-4 · Zbl 1118.18001
[41] P. Katis, N. Sabadini, R. F. C. Walters, Span(Graph): A categorical algebra of transition systems, In: Algebraic methodology and software technology. AMAST 1997, Berlin, Heidelberg: Springer, 1997, 307-321. http://doi.org/10.1007/BFb0000479 · Zbl 0885.18004
[42] D. E. Keyes, L. C. McInnes, C. Woodward, W. Gropp, E. Myra, M. Pernice, et al., Multiphysics simulations: Challenges and opportunities, The International Journal of High Performance Computing Applications, 27 (2013), 4-83. http://doi.org/10.1177/1094342012468181 · doi:10.1177/1094342012468181
[43] A. Kock, Limit monads in categories, PhD thesis, The University of Chicago, 1967.
[44] J. Kock, Whole-grain Petri nets and processes, 2022, arXiv: 2005.05108.
[45] I. Kolár, P. W. Michor, J. Slovák, Natural operations in differential geometry, Berlin, Heidelberg: Springer, 1993. http://doi.org/10.1007/978-3-662-02950-3 · Zbl 0782.53013
[46] E. A. Lacomba, F. Ongay, On a structural schema of physical theories proposed by E. Tonti, In: The mathematical heritage of C. F. Gauss, World Scientific, 1991, 432-453. http://doi.org/10.1142/9789814503457_0032 · Zbl 0770.53055
[47] V. Lahtinen, P. R. Kotiuga, A. Stenvall, An electrical engineering perspective on missed opportunities in computational physics, 2018, arXiv: 1809.01002.
[48] G. F. Lawler, Random walk and the heat equation, American Mathematical Society, 2010. http://doi.org/10.1090/stml/055 · Zbl 1213.60001
[49] F. W. Lawvere, Functorial semantics of algebraic theories, PhD thesis, Columbia University, 1963. · Zbl 0119.25901
[50] T. Leinster, Higher operads, higher categories, Cambridge University Press, 2004. http://doi.org/10.1017/CBO9780511525896 · Zbl 1160.18001
[51] T. Leinster, Basic category theory, Cambridge University Press, 2014. http://doi.org/10.1017/CBO9781107360068 · Zbl 1295.18001
[52] S. Libkind, A. Baas, M. Halter, E. Patterson, J. Fairbanks, An algebraic framework for structured epidemic modeling, 2022, arXiv: 2203.16345.
[53] S. Libkind, A. Baas, E. Patterson, J. Fairbanks, Operadic modeling of dynamical systems: mathematics and computation, 2021, arXiv: 2105.12282.
[54] S. Mac Lane, Categories for the working mathematician, 2 Eds., New York, NY: Springer, 1978. http://doi.org/10.1007/978-1-4757-4721-8
[55] R. B. Melrose, Differential analysis on manifolds with corners, unpublished work.
[56] J. Meseguer, U. Montanari, Petri nets are monoids, Inform. Comput., 88 (1990), 105-155. http://doi.org/10.1016/0890-5401(90)90013-8 · Zbl 0711.68077 · doi:10.1016/0890-5401(90)90013-8
[57] P. W. Michor, Topics in differential geometry, American Mathematical Society, 2008. · Zbl 1175.53002
[58] P. W. Michor, Manifolds of mappings for continuum mechanics, In: Geometric continuum mechanics, Cham: Birkhäuser, 2020, 3-75. http://doi.org/10.1007/978-3-030-42683-5_1 · Zbl 1445.58002
[59] J. Moeller, C. Vasilakopoulou, Monoidal grothendieck construction, Theor. Appl. Categ., 35 (2020), 1159-1207. · Zbl 1442.18016
[60] M. S. Mohamed, A. N. Hirani, R. Samtaney, Discrete exterior calculus discretization of incompressible navier-stokes equations over surface simplicial meshes, J. Comput. Phys., 312 (2016), 175-191. http://doi.org/10.1016/j.jcp.2016.02.028 · Zbl 1351.76070 · doi:10.1016/j.jcp.2016.02.028
[61] P. Mullen, A. McKenzie, D. Pavlov, L. Durant, Y. Tong, E. Kanso, et al., Discrete lie advection of differential forms, Found. Comput. Math., 11 (2011), 131-149. http://doi.org/10.1007/s10208-010-9076-y · Zbl 1222.35010 · doi:10.1007/s10208-010-9076-y
[62] J. Peetre, Réctification à l’article: Une caractérisation abstraite des opérateurs différentiels, Math. Scand., 8 (1960), 116-120. http://doi.org/10.7146/math.scand.a-10598 · Zbl 0097.10402 · doi:10.7146/math.scand.a-10598
[63] P. Perrone, W. Tholen, Kan extensions are partial colimits, Appl. Categor. Struct., in press. http://doi.org/10.1007/s10485-021-09671-9 · Zbl 1495.18003
[64] G. Peschke, W. Tholen, Diagrams, fibrations, and the decomposition of colimits, 2020, arXiv: 2006.10890.
[65] S. Ramanan, Global calculus, American Mathematical Society, 2005. · Zbl 1082.58019
[66] E. Riehl, Factorization systems, 2008. Available from: https://math.jhu.edu/ eriehl/factorization.pdf.
[67] E. Riehl, Categorical homotopy theory, Cambridge University Press, 2014. http://doi.org/10.1017/CBO9781107261457 · Zbl 1317.18001
[68] E. Riehl, Category theory in context, Dover Publications, 2016. · Zbl 1348.18001
[69] M. Robinson, Sheaf and duality methods for analyzing multi-model systems, In: Recent applications of harmonic analysis to function spaces, differential equations, and data science, Cham: Birkhäuser, 2017, 653-703. http://doi.org/10.1007/978-3-319-55556-0_8 · Zbl 1404.93004
[70] J. Rubinstein, Sine-Gordon equation, J. Math. Phys., 11 (1970), 258-266. http://doi.org/10.1063/1.1665057 · doi:10.1063/1.1665057
[71] P. Selinger, A survey of graphical languages for monoidal categories, In: New structures for physics, Berlin, Heidelberg: Springer, 2010, 289-355. http://doi.org/10.1007/978-3-642-12821-9_4 · Zbl 1217.18002
[72] M. Shulman, Framed bicategories and monoidal fibrations, Theor. Appl. Categ., 20 (2008), 650-738. · Zbl 1192.18005
[73] S. A. Socolofsky, G. H. Jirka, CVEN 489-501: Special topics in mixing and transport processes in the environment, Texas A & M University, Coastal and Ocean Engineering Division, Lecture notes.
[74] D. I. Spivak, The operad of wiring diagrams: formalizing a graphical language for databases, recursion, and plug-and-play circuits, 2013, arXiv: 1305.0297.
[75] D. I. Spivak, Database queries and constraints via lifting problems, Math. Struct. Comput. Sci., 24 (2014), e240602. http://doi.org/10.1017/S0960129513000479 · Zbl 1342.68117 · doi:10.1017/S0960129513000479
[76] D. I. Spivak, Generalized lens categories via functors \(\mathcal{C}^\text{op} \to \mathsf{Cat} \), 2019, arXiv: 1908.02202.
[77] N. E. Steenrod, Cohomology operations, and obstructions to extending continuous functions, Adv. Math., 8 (1972), 371-416. http://doi.org/10.1016/0001-8708(72)90004-7 · Zbl 0236.55018 · doi:10.1016/0001-8708(72)90004-7
[78] R. Street, R. F. C. Walters, The comprehensive factorization of a functor, Bull. Amer. Math. Soc., 79 (1973), 936-941. http://doi.org/10.1090/S0002-9904-1973-13268-9 · Zbl 0274.18001 · doi:10.1090/S0002-9904-1973-13268-9
[79] E. Tonti, On the mathematical structure of a large class of physical theories, Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti, 52 (1972), 48-56.
[80] E. Tonti, The mathematical structure of classical and relativistic physics, New York, NY: Birkhäuser, 2013. http://doi.org/10.1007/978-1-4614-7422-7 · Zbl 1298.00082
[81] A. Vasy, Propagation of singularities for the wave equation on manifolds with corners, Ann. Math., 168 (2008), 749-812. http://doi.org/10.4007/annals.2008.168.749 · Zbl 1171.58007 · doi:10.4007/annals.2008.168.749
[82] T. Wedhorn, Manifolds, sheaves, and cohomology, Wiesbaden: Springer, 2016. http://doi.org/10.1007/978-3-658-10633-1 · Zbl 1361.55001
[83] C. Wells, Sketches: Outline with references, 1993. Available from: https://ncatlab.org/nlab/files/Wells_Sketches.pdf.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.