×

A stochastic thermalization of the discrete nonlinear Schrödinger equation. (English) Zbl 1534.35366

I find this article very interesting. Consider 1d mass subcritical NLS in the periodic case or on torus, in particular the focusing case. It is known that one can construct a natural Gibbs measure, and it can be proven such a Gibbs measure is invariant under the evolution of this equation.
It is however not clear or not expected, in particular in the cubic case, where this model has many/infinity conservation laws, that such a Gibbs measure is the unique invariant measure for the (nonlinear) Schrödinger flow.
One way to overcome this, is to add some noise to the system. The idea of adding noise seems to be natural in those contexts.
But there are two difficulties. 1. Multiplicative noise is hard to study. 2. Additive noise is not mass conserving.
The current article proposes a mass conserving stochastic perturbation of the discrete model, in which case the Gibbs measure becomes the unique invariant distribution. The authors are analyzing this carefully in the article.

MSC:

35Q55 NLS equations (nonlinear Schrödinger equations)
35Q41 Time-dependent Schrödinger equations and Dirac equations
39A12 Discrete version of topics in analysis
60F10 Large deviations
35C08 Soliton solutions
35H10 Hypoelliptic equations
35B20 Perturbations in context of PDEs
35R60 PDEs with randomness, stochastic partial differential equations

References:

[1] Axler, S.; Bourdon, P.; Wade, R., Harmonic Function Theory (2013), New York: Graduate Texts in Mathematics. Springer, New York · Zbl 0765.31001
[2] Bambusi, D.; Penati, T., Continuous approximation of breathers in one- and two-dimensional DNLS lattices, Nonlinearity, 23, 1, 143-157 (2009) · Zbl 1183.37123 · doi:10.1088/0951-7715/23/1/008
[3] Bambusi, D.; Faou, E.; Grébert, B., Existence and stability of ground states for fully discrete approximations of the nonlinear Schrödinger equation, Numer. Math., 123, 3, 461-492 (2013) · Zbl 1261.65133 · doi:10.1007/s00211-012-0491-7
[4] Bellet, LR, Ergodic Properties of Markov Processes, 1-39 (2006), Berlin, Heidelberg: Springer Berlin Heidelberg, Berlin, Heidelberg · Zbl 1126.60057
[5] Bourgain, J., Periodic nonlinear Schrödinger equation and invariant measures, Commun. Math. Phys., 166, 1, 1-26 (1994) · Zbl 0822.35126 · doi:10.1007/BF02099299
[6] Bourgain, J.: Global Solutions of Nonlinear Schrödinger Equations. Number v. 46 in American Mathematical Society colloquium publications, Providence, RI. American Mathematical Society Providence RI (1999) · Zbl 0933.35178
[7] Carlen, EA; Fröhlich, J.; Lebowitz, J., Exponential relaxation to equilibrium for a one-dimensional focusing non-linear Schrödinger equation with noise, Commun. Math. Phys., 342, 1, 303-332 (2016) · Zbl 1341.35148 · doi:10.1007/s00220-015-2511-9
[8] Carlen, EA; Fröhlich, J.; Lebowitz, J.; Wang, W-M, Quantitative bounds on the rate of approach to equilibrium for some one-dimensional stochastic nonlinear Schrödinger equations, Nonlinearity, 32, 4, 1352-1374 (2019) · Zbl 1414.35203 · doi:10.1088/1361-6544/aae69c
[9] Cazenave, T., American Mathematical Society, and Courant Institute of Mathematical Sciences (2003), Providence, RI: Semilinear Schrodinger Equations. Courant lecture notes in mathematics. American Mathematical Society, Providence, RI · Zbl 1055.35003
[10] Chatterjee, S., Invariant measures and the soliton resolution conjecture, Commun. Pure Appl. Math., 67, 11, 1737-1842 (2014) · Zbl 1303.35096 · doi:10.1002/cpa.21501
[11] Chatterjee, S.; Kirkpatrick, K., Probabilistic methods for discrete nonlinear Schrödinger equations, Commun. Pure Appl. Math., 65, 5, 727-757 (2012) · Zbl 1273.35249 · doi:10.1002/cpa.21388
[12] de Bouard, A.; Debussche, A., A stochastic nonlinear Schrödinger equation with multiplicative noise, Commun. Math. Phys., 205, 1, 161-181 (1999) · Zbl 0952.60061 · doi:10.1007/s002200050672
[13] de Bouard, A.; Debussche, A., The stochastic nonlinear Schrödinger equation in \({H}^1\), Stoch. Anal. Appl., 21, 1, 97-126 (2003) · Zbl 1027.60065 · doi:10.1081/SAP-120017534
[14] De Bouard, A.; Debussche, A.; Fukuizumi, R., Long time behavior of Gross-Pitaevskii equation at positive temperature, SIAM J. Math. Anal., 50, 6, 5887-5920 (2018) · Zbl 1406.35376 · doi:10.1137/17M1149195
[15] Faou, E., Linearized wave turbulence convergence results for three-wave systems, Commun. Math. Phys., 378, 2, 807-849 (2020) · Zbl 1446.76118 · doi:10.1007/s00220-020-03799-w
[16] Flach, S.; Kladko, K.; MacKay, RS, Energy thresholds for discrete breathers in one-, two-, and three-dimensional lattices, Phys. Rev. Lett., 78, 1207-1210 (1997) · doi:10.1103/PhysRevLett.78.1207
[17] Gallay, T.; Hǎrǎgus, M., Orbital stability of periodic waves for the nonlinear Schrödinger equation, J. Dyn. Diff. Equat., 19, 4, 825-865 (2007) · Zbl 1132.35079 · doi:10.1007/s10884-007-9071-4
[18] Gallay, T.; Hǎrǎguş, M., Stability of small periodic waves for the nonlinear Schrödinger equation, J. Differential Equations, 234, 2, 544-581 (2007) · Zbl 1110.35083 · doi:10.1016/j.jde.2006.12.007
[19] Gradenigo, G.; Iubini, S.; Livi, R.; Majumdar, SN, Localization transition in the discrete nonlinear Schrödinger equation: ensembles inequivalence and negative temperatures, J. Stat. Mech: Theory Exp., 2021, 2, 023201 (2021) · Zbl 1539.82018 · doi:10.1088/1742-5468/abda26
[20] Gustafson, S.; Le Coz, S.; Tsai, T-P, Stability of Periodic Waves of 1D Cubic Nonlinear Schrödinger Equations, Applied Mathematics Research eXpress, 2017, 2, 431-487 (2017) · Zbl 1403.35277 · doi:10.1093/amrx/abx004
[21] Hairer, M: A probabilistic argument for the controllability of conservative systems. arXiv: math-ph/0506064, (2005)
[22] Hairer, M.: On Malliavin’s proof of Hörmander’s theorem. Bulletin des Sciences Mathématiques, 135(6):650-666, (2011). Special issue in memory of Paul Malliavin · Zbl 1242.60085
[23] Hannani, A., Olla, S.: In preparation
[24] Hörmander, L., The Analysis of Linear Partial Differential Operators III: Pseudo-Differential Operators (2007), Berlin Heidelberg: Classics in Mathematics. Springer, Berlin Heidelberg · Zbl 1115.35005 · doi:10.1007/978-3-540-49938-1
[25] Johansson, M.; Rasmussen, KØ, Statistical mechanics of general discrete nonlinear Schrödinger models: Localization transition and its relevance for Klein-Gordon lattices, Phys. Rev. E, 70, 066610 (2004) · doi:10.1103/PhysRevE.70.066610
[26] Kevrekidis, P.G.: The discrete nonlinear Schrödinger equation: mathematical analysis, numerical computations and physical perspectives, volume 232. Springer Science & Business Media, (2009) · Zbl 1169.35004
[27] Kirkpatrick, K., Solitons and gibbs measures for nonlinear Schrödinger equations, Mathematical Modelling of Natural Phenomena, 7, 2, 95-112 (2012) · Zbl 1251.35150 · doi:10.1051/mmnp/20127209
[28] Kojima, H.; Matsuo, T.; Furihata, D., Some discrete inequalities for central-difference type operators, Math. Comput., 86, 306, 1719-1739 (2017) · Zbl 1361.65057 · doi:10.1090/mcom/3154
[29] Lawden, D.F: Elliptic functions and applications, vol 80. Springer Science & Business Media, (2013) · Zbl 0689.33001
[30] Lebowitz, JL; Mounaix, Ph; Wang, W-M, Approach to equilibrium for the stochastic NLS., Commun. Math. Phys., 321, 1, 69-84 (2013) · Zbl 1281.60061 · doi:10.1007/s00220-012-1632-7
[31] Lebowitz, J. L.; Rose, H. A.; Speer, E. R., Statistical mechanics of the nonlinear Schrödinger equation, J. Stat. Phys., 50, 3, 657-687 (1988) · Zbl 0925.35142 · doi:10.1007/BF01026495
[32] Letizia, V.: Microscopic models for Fourier’s law. PhD thesis, Université Paris-Dauphine - PSL Research University, (2017)
[33] McKean, HP, Statistical mechanics of nonlinear wave equations (4): Cubic Schrödinger, Commun. Math. Phys., 168, 3, 479-491 (1995) · Zbl 0821.60069 · doi:10.1007/BF02101840
[34] McKean, HP; Vaninsky, KL, Brownian motion with restoring drift: The petit and micro-canonical ensembles, Commun. Math. Phys., 160, 3, 615-630 (1994) · Zbl 0792.60077 · doi:10.1007/BF02173433
[35] McKean, HP; Vaninsky, KL, Action-angle variables for the cubic Schrödinger equation, Commun. Pure Appl. Math., 50, 6, 489-562 (1997) · Zbl 0990.35047 · doi:10.1002/(SICI)1097-0312(199706)50:6<489::AID-CPA1>3.0.CO;2-4
[36] McKean, HP; Vaninsky, KL, Cubic Schrödinger: The petit canonical ensemble in action-angle variables, Commun. Pure Appl. Math., 50, 7, 593-622 (1997) · Zbl 0883.35032 · doi:10.1002/(SICI)1097-0312(199707)50:7<593::AID-CPA1>3.0.CO;2-2
[37] Milstein, GN; Repin, YuM; Tretyakov, MV, Symplectic integration of hamiltonian systems with additive noise, SIAM J. Numer. Anal., 39, 6, 2066-2088 (2002) · Zbl 1019.60056 · doi:10.1137/S0036142901387440
[38] Pava, JA, Nonlinear Dispersive Equations: Existence and Stability of Solitary and Periodic Travelling Wave Solutions (2009), Providence, RI: Mathematical surveys and monographs. American Mathematical Society, Providence, RI · Zbl 1202.35246 · doi:10.1090/surv/156
[39] Raphaël, P.: Stability and blow up for the non linear Schrödinger equation. Lecture notes from the Clay Math 2008 Summer School on Evolution Equations.Clay Mathematics Proceedings, 17. American Mathematical Society, Providence, R.I.; Clay Mathematics Institute, Cambridge, Mass., pp. 269-323, (2014) · Zbl 1298.35202
[40] Rasmussen, KØ; Cretegny, T.; Kevrekidis, PG; Grønbech-Jensen, N., Statistical mechanics of a discrete nonlinear system, Phys. Rev. Lett., 84, 3740-3743 (2000) · doi:10.1103/PhysRevLett.84.3740
[41] Rumpf, B., Simple statistical explanation for the localization of energy in nonlinear lattices with two conserved quantities, Phys. Rev. E, 69, 016618 (2004) · doi:10.1103/PhysRevE.69.016618
[42] Tao, T.: Conference Board of the Mathematical Sciences, National Science Foundation (U.S.)., and American Mathematical Society. Nonlinear Dispersive Equations: Local and Global Analysis. Conference Board of the Mathematical Sciences. Regional conference series in mathematics. American Mathematical Society, (2006) · Zbl 1106.35001
[43] Weinstein, MI, Excitation thresholds for nonlinear localized modes on lattices, Nonlinearity, 12, 3, 673-691 (1999) · Zbl 0984.35147 · doi:10.1088/0951-7715/12/3/314
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.