×

The resolution of the optimal reactive dispatch problem via the relaxed barrier-Lagrangian function method. (A resolução do problema de despacho ótimo de reativos pelo método da função lagrangiana-barreira relaxada.) (Portuguese. English summary) Zbl 1257.90080

Summary: This work presents the application of the relaxed barrier-Lagrangian function method to the optimal reactive dispatch problem, which is a nonlinear nonconvex and large problem. In this approach the inequality constraints are treated by the association of modified barrier and primal-dual logarithmic barrier method. Those constraints are transformed in equalities through positive auxiliary variables and are perturbed by the barrier parameter. A Lagrangian function is associated to the modified problem. The first-order necessary conditions are applied generating a non-linear system which is solved by Newton’s method. The auxiliary variables perturbation result in an expansion of the feasible set of the original problem, allowing the limits of the inequality constraints to be reach. Numeric tests with the systems CESP 53 buses and the south-southeast Brazilian and the comparative test with the primal-dual logarithmic barrier method indicate that presented method is efficient in the resolution of optimal reactive dispatch problem.

MSC:

90C26 Nonconvex programming, global optimization
90C53 Methods of quasi-Newton type

References:

[1] Akrotirianakis I., Convergent Interior-Point Algorithm for Nonlinear Programming, Journal of Optimization Theory and Applications 125 (3) pp 497– (2005) · Zbl 1079.90154 · doi:10.1007/s10957-005-2086-2
[2] Baptista E.C., Um Método Primal-Dual Aplicado na Resolução do Problema de Fluxo de Potência Ótimo, Pesq. Oper. 24 (2) pp 215– (2004) · doi:10.1590/S0101-74382004000200001
[3] Baptista E.C., Primal-Dual Logarithmic Barrier and Augmented Lagrangian Function to the Loss Minimization in Power Systems, Electric Power Components & Systems 32 (7) pp 775– (2006) · doi:10.1080/15325000500488602
[4] Byrd R.H., Feasible Interior Methods Using Slacks for Nonlinear Optimization, Computational Optimization and Applications 26 pp 35– (2003) · Zbl 1053.90119 · doi:10.1023/A:1025136421370
[5] Breitfeld M.G., Computational experience with penalty-barrier methods for nonlinear programming, Annals of Operations Research 62 pp 439– (1996) · Zbl 0848.90108 · doi:10.1007/BF02206826
[6] Christie R.D., Transmission Management in the Deregulated Environment, Proceedings of the IEEE 88 (2) (2000) · doi:10.1109/5.823997
[7] Conn A.R., A Globally Convergent Lagrangian Barrier Algorithm for Optimization With General Inequality Constraints and Simple Bounds, Mathematics of Computation 66 (217) pp 261– (1997) · Zbl 0854.90125 · doi:10.1090/S0025-5718-97-00777-1
[8] Costa G.R.M., Modified Newton method for reactive dispatching, Electrical Power & Energy Systems 24 pp 815– (2002) · doi:10.1016/S0142-0615(02)00013-3
[9] Forsgren A., Interior Methods for Nonlinear Optimization, SIAM REVIEW 44 (4) pp 525– (2002) · Zbl 1028.90060 · doi:10.1137/S0036144502414942
[10] Gill P.E., Recent Developments In Constrained Optimization, Journal of Computational and Applied Mathematics 22 (2-3) pp 257– (1998) · Zbl 0659.90075 · doi:10.1016/0377-0427(88)90405-0
[11] Granville S., Optimal Reactive Dispatch Through Interior Point Methods, IEEE Transactions on Power Systems 9 pp 136– (1994) · doi:10.1109/59.317548
[12] Hestenes M.R., Survey Paper: Multiplier and Gradient Methods, J.O.T.A 4 (5) pp 303– (1969) · Zbl 0174.20705 · doi:10.1007/BF00927673
[13] Hunealt M., A Survey of the Optimal Power Flow Literature, IEEE Transactions on Power Systems 6 pp 762– (1991) · doi:10.1109/59.76723
[14] Melman A., The Newton Modified Barrier Method for QP Problems, Annals of Operations Research 54 pp 465– (1996) · Zbl 0848.90099 · doi:10.1007/BF02206827
[15] Momoh J.A., A review of Selected Optimal Power Flow Literature to 1993 - Part I: Nonlinear and Quadratic Programming and Approaches - Part II: Newton, Linear Programming and Interior Point Methods, IEEE Transactions on Power Systems 14 (1) pp 96– (1990) · doi:10.1109/59.744492
[16] Monteiro R.D.C., Interior Path Following Primal-Dual Algorithms: Part I: Linear Programming, Mathematical Programming 44 (1) pp 27– (1989) · Zbl 0676.90038 · doi:10.1007/BF01587075
[17] Monteiro R.D.C., Interior Path Following Primal-Dual Algorithms: Part II: Convex Quadratic Programming, Mathematical Programming 44 (1) pp 43– (1989) · Zbl 0676.90039 · doi:10.1007/BF01587076
[18] Monticelli A., Fluxo de Carga em Redes de Energia Elétrica pp 75– (1983)
[19] Nocedal J., Numerical Optimization (1999)
[20] Polyak R.A., Modified Barrier Functions, Mathematical Programming 54 (2) pp 177– (1992) · Zbl 0756.90085 · doi:10.1007/BF01586050
[21] Powell M.J.D., Optimization, in: A Method for Nonlinear Constraints in Minimization Problems pp 283– (1969)
[22] Ramos J.L.M., Transmission power loss reduction by interior-point methods: implementation issues and practical experience, IEE Proc.-Generation Transmission and Distribution 152 (1) pp 90– (2005) · doi:10.1049/ip-gtd:20041150
[23] Shanno D.F., Interior-point methods for nonconvex nonlinear programming: orderings and higher-order methods, Mathematical Programming 87 pp 303– (2000) · Zbl 1054.90091 · doi:10.1007/s101070050116
[24] Sousa V.A., Modified Barrier Method for Optimal Power Flow Problem (2004)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.