×

Using local learning with fuzzy transform: application to short term forecasting problems. (English) Zbl 1439.62208

Summary: In this paper, we formally discuss a computational scheme, which combines a local weighted regression model with fuzzy transform (or F-transform for short). The latter acts as a reduction technique on the cardinality of the learning problem, resulting in a more efficient algorithm. We tested the proposed approach first through two typical benchmark problems, that is the Hénon and the Mackey-Glass chaotic time series, then we applied it to short-term forecasting problems. Short-term forecasting is important in the energy field for the management of power systems and for energy trading. Hence, we considered two typical application examples in this field, that is wind power forecasting and load forecasting. Numerical results show the effectiveness of the proposed approach through a comparison against alternative techniques.

MSC:

62M86 Inference from stochastic processes and fuzziness
62M10 Time series, auto-correlation, regression, etc. in statistics (GARCH)
62F03 Parametric hypothesis testing
62M20 Inference from stochastic processes and prediction
Full Text: DOI

References:

[1] Akaike, H., A new look at the statistical model identification, IEEE Transactions on Automatic Control, 19, 716-723 (1974) · Zbl 0314.62039 · doi:10.1109/TAC.1974.1100705
[2] Appice, A., Pravilovic, S., Lanza, A., & Malerba, D. (2015). Very short-term wind speed forecasting using spatio-temporal lazy learning, lecture notes in computer science, 9356 (pp. 9-16).
[3] Bessec, M.; Fouquau, J., Short-run electricity load forecasting with combinations of stationary wavelet transforms, European Journal of Operational Research, 264, 149-164 (2018) · Zbl 1383.62339 · doi:10.1016/j.ejor.2017.05.037
[4] Bontempi, G. (1999). Local learning techniques for modelling, prediction and control. IRIDIA - Université Libre de Bruxelles, (Ph.D. thesis).
[5] Bontempi, G.; Bersini, H.; Birattari, M., The local paradigm for modeling and control: From neuro-fuzzy to lazy learning, Fuzzy Sets and Systems, 121, 1, 59-72 (2001) · Zbl 0978.93528 · doi:10.1016/S0165-0114(99)00172-4
[6] Bontempi, G., Birattari, M., & Bersini, H. (1999). Local learning for iterated time-series prediction. In I. Bratko, S. Dzeroski (Eds.), Machine learning: Proceedings of the sixteenth international conference (pp. 32-38). San Francisco, CA: Morgan Kaufmann. · Zbl 0938.93531
[7] Capuno, M., Kim, J. S., & Song, H. (2017). Very short-term load forecasting using hybrid algebraic prediction and support vector regression. Mathematical Problems in Engineering (Article ID 8298531).
[8] Chan, Sc; Tsui, Km; Wu, Hc; Hou, Y.; Wu, Yc; Wu, Ff, Load/price forecasting and managing demand-response for smart grids, IEEE Signal Processing Magazine, 29, 5, 68-85 (2012) · doi:10.1109/MSP.2012.2186531
[9] Chang, Lc; Chang, Fj; Wang, Yp, Auto-configuring radial basis function networks for chaotic time series and flood forecasting, Hydrological Processes, 23, 2450-2459 (2009) · doi:10.1002/hyp.7352
[10] Fan, S.; Hyndman, Rj, Short-term load forecasting based on a semi-parametric additive model, IEEE Transactions on Power Systems, 27, 1, 134-141 (2012) · doi:10.1109/TPWRS.2011.2162082
[11] Hippert, Hs; Pedreira, Ce; Souza, Rc, Neural networks for short-term load forecasting: A review and evaluation, IEEE Transactions on Power Systems, 16, 1, 44-55 (2001) · doi:10.1109/59.910780
[12] Hong, T.; Wang, P., Fuzzy interaction regression for short term load forecasting, Fuzzy Optimization and Decision Making, 13, 1, 91-103 (2014) · Zbl 1428.62498 · doi:10.1007/s10700-013-9166-9
[13] Hong, T., Wang, P., & Willis, H. L. (2011). A naive multiple linear regression benchmark for short term load forecasting. In IEEE Power and Energy Society General Meeting (pp. 1-6). Detroit, MI, USA, 2011.
[14] Hurtik, P., & Tomasiello, S. (2019). A review on the application of fuzzy transform in data and image compression. Soft Computing(in press). · Zbl 1436.94009
[15] Hurvich, Cm; Simonoff, Js; Tsai, Cl, Smoothing parameter selection in nonparametric regression using an improved Akaike information criterion, Journal of the Royal Statistical Society. Series B (Statistical Methodology), 60, 2, 271-293 (1998) · Zbl 0909.62039 · doi:10.1111/1467-9868.00125
[16] Jayawardena, Aw; Xu, Pc; Tsang, Fl; Li, Wk, Determining the structure of a radial basis function network for prediction of nonlinear hydrological time series, Hydrological Sciences Journal, 51, 1, 21-44 (2006) · doi:10.1623/hysj.51.1.21
[17] Kuck, M., & Scholz-Reiter, B. (2013). A genetic algorithm to optimize lazy learning parameters for the prediction of customer demands. In 12th international conference on machine learning and applications (pp. 160-165).
[18] Loia, V.; Tomasiello, S.; Vaccaro, A., Using fuzzy transform in multi-agent based monitoring of smart grids, Information Science, 388, 389, 209-224 (2017) · doi:10.1016/j.ins.2017.01.022
[19] Meng, K.; Dong, Zy; Wong, Kp, Self-adaptive radial basis function neural network for short-term electricity price forecasting, IET Generation, Transmission & Distribution, 3, 4, 325-335 (2009) · doi:10.1049/iet-gtd.2008.0328
[20] Mishra, Sp; Dash, Pk, Short-term prediction of wind power using a hybrid pseudo-inverse Legendre neural network and adaptive firefly algorithm, Neural Conputing and Applications, 31, 7, 2243-2268 (2017) · doi:10.1007/s00521-017-3185-3
[21] Pan, Th; Li, S.; Li, N., Optimal bandwidth design for lazy learning via particle swarm optimization, Intelligent Automation & Soft Computing, 15, 1, 1-11 (2009) · doi:10.1080/10798587.2009.10643011
[22] Poncela, M.; Poncela, P.; Peran, Jr, Automatic tuning of Kalman filters by maximum likelihood methods for wind energy forecasting, Applied Energy, 108, 349-362 (2013) · doi:10.1016/j.apenergy.2013.03.041
[23] Rana, M.; Koprinska, I., Forecasting electricity load with advanced wavelet neural networks, Neurocomputing, 182, 118-132 (2016) · doi:10.1016/j.neucom.2015.12.004
[24] Stone, M., Cross-validatory choice and assessment of statistical predictions, Journal of the Royal Statistical Society B, 36, 1, 111-147 (1974) · Zbl 0308.62063
[25] Sun, G., Short-term wind power forecasts by a synthetical similar time series data mining method, Renewable Energy, 115, 575-584 (2018) · doi:10.1016/j.renene.2017.08.071
[26] Taylor, Jw, An evaluation of methods for very short-term load forecasting using minute-by-minute British data, International Journal of Forecasting, 24, 645-658 (2008) · doi:10.1016/j.ijforecast.2008.07.007
[27] Vaccaro, A.; Mercogliano, P.; Schiano, P.; Villacci, D., An adaptive framework based on multi-model data fusion for one-day-ahead wind power forecasting, Electric Power Systems Research, 81, 775-782 (2011) · doi:10.1016/j.epsr.2010.11.009
[28] Zhang, P., Gao, B. J., Zhu, X., & Guo, L. (2011). Enabling fast lazy learning for data streams. In IEEE international conference on data mining (ICDM) (pp. 932-941).
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.