×

Shifted polyharmonic Maass forms for \(\text{PSL} (2,{\mathbb Z})\). (English) Zbl 1440.11078

Summary: We study the vector space \(V_k^m(\lambda)\) of shifted polyharmonic Maass forms of weight \(k\in 2\mathbb Z\), depth \(m\geq 0\), and shift \(\lambda\in \mathbb C\). This space is composed of real-analytic modular forms of weight \(k\) for \(\operatorname{PSL}(2,\mathbb Z)\) with moderate growth at the cusp which are annihilated by \((\varDelta_k - \lambda)^m\), where \(\varDelta_k\) is the weight \(k\) hyperbolic Laplacian. We treat the case \(\lambda \neq 0\), complementing work of the second and third authors on polyharmonic Maass forms (with no shift). We show that \(V_k^m(\lambda)\) is finite-dimensional and bound its dimension. We explain the role of the real-analytic Eisenstein series \(E_k(z,s)\) with \(\lambda=s(s+k-1)\) and of the differential operator \(\frac{\partial}{\partial s}\) in this theory.

MSC:

11F55 Other groups and their modular and automorphic forms (several variables)
11F37 Forms of half-integer weight; nonholomorphic modular forms
11F12 Automorphic forms, one variable

Software:

DLMF

References:

[1] N. Aronszajn, T. M. Creese and L. J. Lipkin, Polyharmonic Functions, Oxford Univ. Press, Oxford, 1983. [3] J. H. Bruinier and J. Funke, On two geometric theta lifts, Duke Math. J. 125 (2004), 45-90. [4] J. H. Bruinier, K. Ono and R. C. Rhoades, Differential operators for harmonic weak Maass forms and the vanishing of Hecke eigenvalues, Math. Ann. 342 (2008), 673-693; Erratum, ibid. 345 (2009), 31. [5] D. Bump, Automorphic Forms and Representations, Cambridge Univ. Press, Cambridge, 1997. · Zbl 1246.11098
[2] P. Cartier, Some numerical computations relating to automorphic functions, in: Computers in Number Theory (Oxford, 1969), A. O. L. Atkin and B. J. Birch (eds.), Academic Press, London, 1971, 37-48. [7] W. Duke, J. B. Friedlander and H. Iwaniec, The subconvexity problem for Artin Lfunctions, Invent. Math. 149 (2002), 489-577. [8] W. Duke, ¨O. Imamo¯glu and ´A. T´oth, Regularized inner products of modular functions, Ramanujan J. 41 (2016), 13-29. · Zbl 1418.11069
[3] D. A. Hejhal, Some observations concerning eigenvalues of the Laplacian and Dirichlet L-series, in: Recent Progress in Analytic Number Theory, Vol. 2, Academic Press, New York, 1981, 95-110. · Zbl 0457.10009
[4] D. A. Hejhal, The Selberg Trace Formula for PSL(2, R), Vol. 2, Lecture Notes in Math. 1001, Springer, Berlin, 1983. · Zbl 0543.10020
[5] D. A. Hejhal, Eigenvalues of the Laplacian for PSL(2, Z): some new results and computational techniques, in: Int. Sympos. in Memory of Hua Loo Keng, Vol. I (Beijing, 1988), Springer, Berlin, 1991, 59-102. [12] D. A. Hejhal, Eigenvalues of the Laplacian for Hecke triangle groups, Mem. Amer. Math. Soc. 97 (1992), no. 469, vi+165 pp.
[6] P. Humphries, Spectral multiplicity for Maass newforms of non-squarefree level, arXiv: 1502.06885v1 (2015). [14] H. Iwaniec and E. Kowalski, Analytic Number Theory, Amer. Math. Soc. Colloq. Publ. 53, Amer. Math. Soc., Providence, RI, 2004. · Zbl 1059.11001
[7] T. Kubota, Elementary Theory of Eisenstein Series, Halsted Press, New York, 1973. [16] J. C. Lagarias and R. C. Rhoades, Polyharmonic Maass forms for PSL(2, Z), Ramanujan J. 41 (2016), 191-232. [17] J. C. Lagarias and M. Suzuki, The Riemann hypothesis for certain integrals of Eisenstein series, J. Number Theory 118 (2006), 98-122. [18] H. Maass, ¨Uber eine neue Art von nichtanalytischen automorphen Funktionen und die Bestimmung Dirichletscher Reihen durch Funktionalgleichungen, Math. Ann. 121 (1949), 141-183.
[8] H. Maass, Die Differentialgleichungen in der Theorie der elliptischen Modulfunktionen, Math. Ann. 125 (1953), 235-263. · Zbl 0053.05601
[9] H. Maass, Lectures on Modular Functions of One Complex Variable, Tata Inst. Fund. Res., Bombay, 1964 (2nd ed., 1983). [21] D. Mitrea, Distributions, Partial Differential Equations, and Harmonic Analysis, Universitext, Springer, New York, 2013. · Zbl 0254.10018
[10] NIST Digital Library of Mathematical Functions, release 1.0.13 of 2016-09-16, F. W. J. Olver et al. (eds.), http://dlmf.nist.gov/. [23] R. Raghunathan, On L-functions with poles satisfying Maass’s functional equation, J. Number Theory 130 (2010), 1255-1273. [24] H. Render, Real Bargmann spaces, Fischer decompositions, and sets of uniqueness for polyharmonic functions, Duke Math. J. 142 (2008), 313-352. · Zbl 1140.31004
[11] P. Sarnak, letter to Ze´ev Rudnick, August 2002. [26] P. Sarnak, Spectra of hyperbolic surfaces, Bull. Amer. Math. Soc. 40 (2003), 441-478. [27] J.-P. Serre, A Course in Arithmetic, Springer, New York, 1973. · Zbl 1045.11033
[12] H. M. Stark, Fourier coefficients of Maass waveforms, in: Modular Forms (Durham, 1983), Ellis Horwood Ser. Math. Appl. Statist. Oper. Res., Horwood, Chichester, 1984, 263-269. · Zbl 0554.10013
[13] G. Steil, Eigenvalues of the Laplacian and of the Hecke operators for PSL(2, Z), Tech. Rep. DESY 94-028, DESY, Hamburg, 1994, 25 pp. [30] F. Str¨omberg, Newforms and spectral multiplicity of Γ0(9), Proc. London Math. Soc. 105 (2012), 281-310. [31] A. Str¨ombergsson, On the zeros of L-functions associated to Maass waveforms, Int. Math. Res. Notices 1999, no. 15, 839-851. · Zbl 1139.11314
[14] E. M. Whittaker and G. N. Watson, A Course of Modern Analysis, 4th ed., Cambridge Univ. Press, 1927 (reissued 1996). Nickolas Andersen Department of Mathematics UCLA Los Angeles, CA 90095, U.S.A. E-mail: nandersen@math.ucla.edu Jeffrey C. Lagarias Department of Mathematics University of Michigan Ann Arbor, MI 48109-1043, U.S.A. E-mail: lagarias@umich.edu Robert C. Rhoades Center for Communications Research Princeton, NJ 08540, U.S.A. and Susquehanna International Group 401 City Ave. Bala Cynwyd, PA 19004, U.S.A. E-mail: rob.rhoades@gmail.com
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.