×

Distribution-free learning theory for approximating submanifolds from reptile motion capture data. (English) Zbl 1480.92028

Summary: This paper describes the formulation and experimental testing of an estimation of submanifold models of animal motion. It is assumed that the animal motion is supported on a configuration manifold, \(Q\), and that the manifold is homeomorphic to a known smooth, Riemannian manifold, \(S\). Estimation of the configuration submanifold is achieved by finding an unknown mapping, \(\gamma\), from \(S\) to \(Q\). The overall problem is cast as a distribution-free learning problem over the manifold of measurements. This paper defines sufficient conditions that show that the rates of convergence in \(L^2_\mu(S)\) of approximations of \(\gamma\) correspond to those known for classical distribution-free learning theory over Euclidean space. This paper concludes with a study and discussion of the performance of the proposed method using samples from recent reptile motion studies.

MSC:

92C10 Biomechanics
57Z10 Relations of manifolds and cell complexes with biology
Full Text: DOI

References:

[1] Bender MJ, McClelland M, Bledt G, Kurdila A, Furukawa T, Mueller R (2015) Trajectory estimation of bat flight using a multi-view camera system. In: AIAA modeling and simulation technologies conference, p 1806
[2] Birn-Jeffery, AV; Higham, TE, Geckos decouple fore- and hind limb kinematics in response to changes in incline, Frontiers Zool, 13, 1, 1-13 (2016)
[3] Hudson, PE; Corr, SA; Wilson, AM, High speed galloping in the cheetah (acinonyx jubatus) and the racing greyhound (canis familiaris): spatio-temporal and kinetic characteristics, J Exp Biol, 215, 14, 2425-2434 (2012)
[4] Rivers I, Lukas H, David L (2018) Biomechanics of hover performance in Neotropical hummingbirds versus bats. Sci Adv 4(9)
[5] Porro, LB; Collings, AJ; Eberhard, EA; Chadwick, KP; Richards, CT, Inverse dynamic modelling of jumping in the red-legged running frog, kassina maculata, J Exp Biol, 220, 10, 1882-1893 (2017)
[6] Schubert T, Gkogkidis A, Ball T, Burgard W (2015) Automatic initialization for skeleton tracking in optical motion capture. In: 2015 IEEE international conference on robotics and automation (ICRA). IEEE, pp 734-739
[7] Brossette, S.; Escande, A.; Kheddar, A., Multicontact postures computation on manifolds, IEEE Trans Robot, 34, 5, 1252-1265 (2018)
[8] Ćesić J, Joukov V, Petrović I, Kulić D (2016) Full body human motion estimation on lie groups using 3D marker position measurements. In: IEEE-RAS international conference on humanoid robots, pp 826-833
[9] Hatton, RL; Choset, H., Nonconservativity and noncommutativity in locomotion, Eur Phys J Spec Top, 224, 17-18, 3141-3174 (2015)
[10] Shammas, EA; Choset, H.; Rizzi, AA, Geometric motion planning analysis for two classes of underactuated mechanical systems, Int J Robot Res, 26, 10, 1043-1073 (2007)
[11] Bender M, Yang X, Chen H, Kurdila A, Müller R (2017) Gaussian process dynamic modeling of bat flapping flight. In: 2017 IEEE international conference on image processing (ICIP), pp 4542-4546
[12] McInroe, B.; Astley, HC; Gong, C.; Kawano, SM; Schiebel, PE; Rieser, JM; Choset, H.; Blob, RW; Goldman, DI, Tail use improves performance on soft substrates in models of early vertebrate land locomotors, Science, 353, 6295, 154-158 (2016)
[13] Rieser JM, Gong C, Astley HC, Schiebel PE, Hatton RL, Choset H, Goldman DI (2019) Geometric phase and dimensionality reduction in locomoting living systems. arXiv preprint arXiv:1906.11374
[14] Wang, JM; Fleet, DJ; Hertzmann, A., Gaussian process dynamical models for human motion, IEEE Trans Pattern Anal Mach Intell, 30, 2, 283-298 (2007)
[15] Bayandor J, Bledt G, Dadashi S, Kurdila A, Murphy I, Lei Y (2013) Adaptive control for bioinspired flapping wing robots. In: 2013 American control conference. IEEE, pp 609-614
[16] Horvat, T.; Melo, K.; Ijspeert, AJ, Spine controller for a sprawling posture robot, IEEE Robot Autom Lett, 2, 2, 1195-1202 (2017)
[17] Karakasiliotis, K.; Thandiackal, R.; Melo, K.; Horvat, T.; Mahabadi, NK; Tsitkov, S.; Cabelguen, J-M; Ijspeert, AJ, From cineradiography to biorobots: an approach for designing robots to emulate and study animal locomotion, J R Soc Interface, 13, 119, 20151089 (2016)
[18] Nyakatura, JA; Melo, K.; Horvat, T.; Karakasiliotis, K.; Allen, VR; Andikfar, A.; Andrada, E.; Arnold, P.; Lauströer, J.; Hutchinson, JR, Reverse-engineering the locomotion of a stem amniote, Nature, 565, 7739, 351 (2019)
[19] Shi, Q.; Li, C.; Li, K.; Huang, Q.; Ishii, H.; Takanishi, A.; Fukuda, T., A modified robotic rat to study rat-like pitch and yaw movements, IEEE/ASME Trans Mech, 23, 5, 2448-2458 (2018)
[20] Van Truong, T.; Le, TQ; Byun, D.; Park, HC; Kim, M., Flexible wing kinematics of a free-flying beetle (Rhinoceros Beetle Trypoxylus Dichotomus), J Bionic Eng, 9, 2, 177-184 (2012)
[21] Michael K (2012) Meet boston dynamics’ ls3-the latest robotic war machine
[22] Li Y, Li B, Ruan J, Rong X (2011) Research of mammal bionic quadruped robots: a review. In: 2011 IEEE 5th international conference on robotics, automation and mechatronics (RAM). IEEE, pp 166-171
[23] Seok S, Wang A, Chuah MY, Otten D, Lang J, Kim S (2013) Design principles for highly efficient quadrupeds and implementation on the MIT cheetah robot. In: 2013 IEEE international conference on robotics and automation. IEEE, pp 3307-3312
[24] Semini, C.; Barasuol, V.; Goldsmith, J.; Frigerio, M.; Focchi, M.; Gao, Y.; Caldwell, DG, Design of the hydraulically actuated, torque-controlled quadruped robot hyq2max, IEEE/ASME Trans Mech, 22, 2, 635-646 (2016)
[25] Raibert M (2008) BigDog, the rough-terrain quadruped robot. IFAC Proc Vol (IFAC-PapersOnline) 17(1 PART 1):6-9
[26] Ugurlu B, Havoutis I, Semini C, Caldwell DG (2013) Dynamic trot-walking with the hydraulic quadruped robot-HYQ: Analytical trajectory generation and active compliance control. In: 2013 IEEE/RSJ international conference on intelligent robots and systems. IEEE, pp 6044-6051
[27] Zhang, G.; Rong, X.; Hui, C.; Li, Y.; Li, B., Torso motion control and toe trajectory generation of a trotting quadruped robot based on virtual model control, Adv Robot, 30, 4, 284-297 (2016)
[28] Collins SH, Ruina A (2005) A bipedal walking robot with efficient and human-like gait. In: Proceedings of the 2005 IEEE international conference on robotics and automation. IEEE, pp 1983-1988
[29] Koolen, T.; Bertrand, S.; Thomas, G.; De Boer, T.; Tingfan, W.; Smith, J.; Englsberger, J.; Pratt, J., Design of a momentum-based control framework and application to the humanoid robot atlas, Int J Humanoid Robot, 13, 1, 1650007 (2016)
[30] Negrello F, Garabini M, Catalano MG, Kryczka P, Choi W, Caldwell DG, Bicchi A, Tsagarakis NG (2016) Walk-man humanoid lower body design optimization for enhanced physical performance. In: 2016 IEEE international conference on robotics and automation (ICRA). IEEE, pp 1817-1824
[31] Ott C, Roa MA, Hirzinger G (2011) Posture and balance control for biped robots based on contact force optimization. In: 2011 11th IEEE-RAS international conference on humanoid robots. IEEE, pp 26-33
[32] Radford, NA; Strawser, P.; Hambuchen, K.; Mehling, JS; Verdeyen, WK; Stuart Donnan, A.; Holley, J.; Sanchez, J.; Nguyen, V.; Bridgwater, L., Valkyrie: Nasa’s first bipedal humanoid robot, J Field Robot, 32, 3, 397-419 (2015)
[33] Stephens BJ, Atkeson CG (2010) Dynamic balance force control for compliant humanoid robots. In: 2010 IEEE/RSJ international conference on intelligent robots and systems. IEEE, pp 1248-1255
[34] Shabana, A., Dynamics of multibody systems (2020), Cambridge: Cambridge University Press, Cambridge · Zbl 1434.70001
[35] Haug, EJ, Computer aided kinematics and dynamics of mechanical systems (1989), Boston: Allyn and Bacon, Boston
[36] Nikravesh, PE, Computer-aided analysis of mechanical systems (1988), Hoboken: Prentice-Hall, Inc., Hoboken
[37] Murray, RM; Shankar Sastry, S., Steering nonholonomic control systems using sinusoids, Nonholonomic Motion Plan, 38, 5, 23-51 (1993) · Zbl 0788.70019
[38] Lynch, KM; Park, FC, Modern robotics (2017), Cambridge: Cambridge University Press, Cambridge
[39] Francesco B, Lewis Andrew D (2004) Geometric control of mechanical systems, vol 49. Texts in applied mathematics. Springer, New York · Zbl 1066.70002
[40] DeVore, R.; Kerkyacharian, G.; Picard, D.; Temlyakov, V., Approximation methods for supervised learning, Found Comput Math, 6, 1, 3-58 (2006) · Zbl 1146.62322
[41] DeVore, R.; Kerkyacharian, G.; Picard, D.; Temlyakov, V., Mathematical methods for supervised learning, IMI Preprints, 22, 1-51 (2004) · Zbl 1146.62322
[42] Györfi, L.; Kohler, M.; Krzyzak, A.; Walk, H., A distribution-free theory of nonparametric regression (2006), Berlin: Springer, Berlin · Zbl 1021.62024
[43] Triebel, H., Theory of function spaces II (1992), Basel: Springer, Basel · Zbl 0763.46025
[44] Hangelbroek, T.; Narcowich, FJ; Ward, JD, Polyharmonic and related kernels on manifolds: interpolation and approximation, Found Comput Math, 12, 5, 625-670 (2012) · Zbl 1259.41005
[45] De Vito E, Mücke N, Rosasco L (2019) Reproducing kernel hilbert spaces on manifolds: Sobolev and diffusion spaces. arXiv preprint arXiv:1905.10913 · Zbl 1478.46021
[46] Saitoh, S.; Alpay, D.; Ball, JA; Ohsawa, T., Reproducing kernels and their applications (2013), Berlin: Springer, Berlin
[47] Berlinet, A.; Thomas-Agnan, C., Reproducing kernel Hilbert spaces in probability and statistics (2011), Berlin: Springer, Berlin · Zbl 1145.62002
[48] Williams, CKI; Rasmussen, CE, Gaussian processes for machine learning (2006), Cambridge: MIT Press, Cambridge · Zbl 1177.68165
[49] Wendland, H., Scattered data approximation (2004), Cambridge: Cambridge University Press, Cambridge · Zbl 1185.65022
[50] Hedrick, TL, Software techniques for two-and three-dimensional kinematic measurements of biological and biomimetic systems, Bioinspir Biomim, 3, 3, 034001 (2008)
[51] Klus, S.; Schuster, I.; Muandet, K., Eigendecompositions of transfer operators in reproducing kernel hilbert spaces, Nonlinear Sci, 30, 283-315 (2020) · Zbl 1437.37104
[52] Kurdila AJ, Bobade P (2018) Koopman theory and linear approximation spaces. arXiv preprint arXiv:1811.10809 · Zbl 1398.93148
[53] Corazza, S.; Lars Muendermann, AM; Chaudhari, TD; Cobelli, C.; Andriacchi, TP, A markerless motion capture system to study musculoskeletal biomechanics: visual hull and simulated annealing approach, Ann Biomed Eng, 34, 6, 1019-1029 (2006)
[54] Kreyszig, E., Introductory functional analysis with applications (1978), New York: Wiley, New York · Zbl 0368.46014
[55] Adams, RA; Fournier, JJF, Sobolev spaces (2003), Amsterdam: Elsevier, Amsterdam · Zbl 1098.46001
[56] Binev, P.; Cohen, A.; Dahmen, W.; DeVore, R.; Temlyakov, V., Universal algorithms for learning theory part I: piecewise constant functions, J Mach Learn Res, 6, 1297-1321 (2005) · Zbl 1191.62068
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.