×

The higher topological complexity in digital images. (English) Zbl 1453.55001

In the framework of topological robotics, higher topological complexities have been introduced by Y. B. Rudyak [Topology Appl. 157, No. 5, 916–920 (2010; Zbl 1187.55001)] which generalize Farber’s topological complexity. In [Turk. J. Math. 42, No. 6, 3173–3181 (2018; Zbl 1438.68268)], the present authors introduced an analog of topological complexity in the framework of digital topology as a digital homotopy invariant of digital images. In the present article, the same authors define analogs of higher topological complexities in digital topology.
In addition, the authors provide a simple example showing that unlike in the topological setting, the zero-divisor cup length in digital cohomology provides no lower bound for digital topological complexity.
In Sections 2 and 3, the authors recall basic notions of digital topology and digital homotopy theory, respectively, in a detailed and mostly self-contained way. Section 4 contains the definition of digital higher topological complexities and the computation of some simple examples. The aforementioned cohomology example is given in Section 5, which is independent from the rest of the article. A concluding Section 6 summarizes the results.

MSC:

55M30 Lyusternik-Shnirel’man category of a space, topological complexity à la Farber, topological robotics (topological aspects)
68U05 Computer graphics; computational geometry (digital and algorithmic aspects)
68U10 Computing methodologies for image processing
68T40 Artificial intelligence for robotics
62H35 Image analysis in multivariate analysis

References:

[1] H. Arslan, I. Karaca and A. Oztel, Homology groups of \(n-\) dimensional digital images, XXI Turkish National Mathematics Symposium (2008); B1-13.
[3] A. Borat and T. Vergili, Digital lusternik-schnirelmann category, Turkish J. Math. 42, no.4 (2018), 1845-1852. https://doi.org/10.3906/mat-1801-94 · Zbl 1424.55001
[5] L. Boxer, Digitally continuous functions, Pattern Recognit. Lett. 15 (1994), 833-839. https://doi.org/10.1016/0167-8655(94)90012-4 · Zbl 0822.68119
[7] L. Boxer, A classical construction for the digital fundamental group, J. Math. Im. Vis. 10 (1999), 51-62. https://doi.org/10.1023/A:1008370600456 · Zbl 0946.68151
[9] L. Boxer, Properties of digital homotopy, J. Math. Im. Vis. 22 (2005), 19-26. https://doi.org/10.1007/s10851-005-4780-y · Zbl 1383.68090
[11] L. Boxer, Homotopy properties of sphere-like digital images, J. Math. Im. Vis. 24 (2006), 167-175. https://doi.org/10.1007/s10851-005-3619-x · Zbl 1478.94012
[13] L. Boxer, Digital products, wedges, and covering spaces. J. Math. Im. Vis. 25 (2006), 169-171. https://doi.org/10.1007/s10851-006-9698-5 · Zbl 1478.94013
[15] L. Boxer and I. Karaca, Fundamental groups for digital products, Adv. Appl. Math. Sci. 11, no. 4 (2012), 161-180. · Zbl 1294.57001
[17] L. Boxer and P. C. Staecker, Fundamental groups and Euler characteristics of sphere-like digital images, Appl. Gen. Topol. 17, no.2 (2016), 139-158. https://doi.org/10.4995/agt.2016.4624 · Zbl 1388.68282
[19] L. Chen and J. Zhang, Digital manifolds: an intuitive definition and some properties, Proceedings of the Second ACM/SIGGRAPH Symposium on Solid Modeling and Applications (1993), 459-460. https://doi.org/10.1145/164360.164511
[21] L. Chen, Discrete surfaces and manifolds: a theory of digital-discrete geometry and topology, Rockville, MD, Scientific & Practical Computing, 2004.
[23] L. Chen and Y. Rong, Digital topological method for computing genus and the betti numbers, Topol. Appl. 157, no. 12 (2010), 1931-1936. https://doi.org/10.1016/j.topol.2010.04.006 · Zbl 1214.68425
[25] A. Dranishnikov, Topological complexity of wedges and covering maps, Proc. Amer. Math. Soc. 142, no. 12 (2014), 4365-4376. https://doi.org/10.1090/S0002-9939-2014-12146-0 · Zbl 1305.55003
[27] O. Ege and I. Karaca, Fundamental properties of simplicial homology groups for digital images, Am. J. Comp. Tech. Appl. 1 (2013), 25-43.
[29] O. Ege and I. Karaca, Cohomology theory for digital images, Romanian J. Inf. Sci. Tech. 16, no.1 (2013), 10-28. https://doi.org/10.1186/1687-1812-2013-253 · Zbl 1372.55003
[31] O. Ege and I. Karaca, Digital fibrations, Proc. Nat. Academy Sci. India Sec. A, 87 (2017), 109-114. https://doi.org/10.1007/s40010-016-0302-0 · Zbl 1396.55004
[33] M. Farber, Topological complexity of motion planning, Discrete Comput. Geom. 29, (2003), 211-221. https://doi.org/10.1007/s00454-002-0760-9 · Zbl 1038.68130
[35] M. Farber, Invitation to Topological Robotics. Zur. Lect. Adv. Math., EMS, 2008. https://doi.org/10.4171/054 · Zbl 1148.55011
[37] M. Farber and M. Grant, Robot motion planning, weights of cohomology classes, and cohomology operations, Proc. Amer. Math. Soc. 136, no.9 (2008), 3339-3349. https://doi.org/10.1090/S0002-9939-08-09529-4 · Zbl 1151.55004
[39] M. Farber, S. Tabachnikov and S. Yuzvinsky, Topological robotics: motion planning in projective spaces, Int. Math. Res. Not. 34, (2003), 1850-1870. https://doi.org/10.1155/S1073792803210035 · Zbl 1030.68089
[41] S. E. Han, Digital fundamental group and Euler characteristic of a connected sum of digital closed surfaces, Inf. Sci. 177 (2007), 3314-3326. https://doi.org/10.1016/j.ins.2006.12.013 · Zbl 1122.68143
[43] G. T. Herman, Oriented surfaces in digital spaces, CVGIP: Graph. Models Im. Proc. 55 (1993), 381-396. https://doi.org/10.1006/cgip.1993.1029
[45] I. Karaca and M. Is, Digital topological complexity numbers, Turkish J. Math. 42, no. 6 (2018), 3173-3181. https://doi.org/10.3906/mat-1807-101 · Zbl 1438.68268
[47] I. Karaca and T. Vergili, Fiber bundles in digital images, Proceeding of 2nd International Symposium on Computing in Science and Engineering 700, no. 67 (2011), 1260-1265.
[49] E. Khalimsky, Motion, deformation, and homotopy in finite spaces. Proceedings IEEE International Conference on Systems, Man, and Cybernetics (1987), 227-234.
[51] T. Y. Kong, A digital fundamental group, Comp. Graph. 13 (1989), 159-166. https://doi.org/10.1016/0097-8493(89)90058-7
[53] G. Lupton, J. Oprea and N. Scoville, Homotopy theory on digital topology, (2019), arXiv:1905.07783[math.AT].
[55] Y. Rudyak, On higher analogs of topological complexity, Topol. Appl 157, no. 5 (2010), 916-920. https://doi.org/10.1016/j.topol.2009.12.007 · Zbl 1187.55001
[57] A. S. Schwarz, The genus of a fiber space, Amer. Math. Soc. Transl. 55, no. 2 (1966), 49-140. https://doi.org/10.1090/trans2/055/03 · Zbl 0178.26202
[59] E. Spanier, Algebraic Topology. New York, USA, McGraw-Hill, 1966. https://doi.org/10.1007/978-1-4684-9322-1_5 · Zbl 0145.43303
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.