×

A singular-hyperbolic closing Lemma. (English) Zbl 1155.37022

The paper provides a further investigation on the dynamics of singular-hyperbolic sets for flows generated by vector fields on compact connected boundaryless \(3\)-dimensional manifolds. Here, singular-hyperbolic sets are partially hyperbolic sets with hyperbolic singularities and a volume-expanding central subbundle. Two main theorems are shown:
(A) Every recurrent point contained in an attracting singular-hyperbolic set is approximated either by periodic points or by points for which the \(\omega\)-limit set is a singularity.
(B) On every compact \(3\)-manifold there exists a \(C^\infty\)-vector field that exhibits an attracting singular-hyperbolic set with a regular recurrent point that cannot be approximated by periodic points.

MSC:

37D30 Partially hyperbolic systems and dominated splittings
37D45 Strange attractors, chaotic dynamics of systems with hyperbolic behavior
Full Text: DOI

References:

[1] V. S. Afraimovich, V. V. Bykov, and L. P. Shilnikov, On attracting structurally unstable limit sets of Lorenz attractor type, Trudy Moskov. Mat. Obshch. 44 (1982), 150–212 (Russian). · Zbl 0506.58023
[2] V. Araujo and M. J. Pacifico, Three-dimensional flows, \(26^\circ\) Colóq. Bras. Mat., Inst. Mat. Pura Apl., Rio de Janeiro, 2007.
[3] V. Araujo, M. J. Pacifico, E. R. Pujals, and M. Viana, Singular-hyperbolic attractors are chaotic, Trans. Amer. Math. Soc. (to appear). · Zbl 1214.37010
[4] A. Arroyo and E. Pujals, Dynamical properties of singular-hyperbolic attractors, Série A 2004/292, \(\langle \)http://www.preprint.impa.br\(\rangle .\)
[5] ——, Dynamical properties of singular-hyperbolic attractors, Discrete Contin. Dynam. Systems 19 (2007), 67–87. · Zbl 1200.37021
[6] S. Bautista and C. Morales, Existence of periodic orbits for singular-hyperbolic sets, Mosc. Math. J. 6 (2006), 265–297. · Zbl 1124.37021
[7] ——, Characterizing omega-limit sets which are closed orbits, preprint, 2007.
[8] ——, Intersecting invariant manifolds on singular-hyperbolic sets (in preparation).
[9] M. Benedicks and L. Carleson, The dynamics of the Hénon map, Ann. of Math. (2) 133 (1991), 73–169. JSTOR: · Zbl 0724.58042 · doi:10.2307/2944326
[10] C. Bonatti, L. Diaz, and M. Viana, Dynamics beyond uniform hyperbolicity. A global geometric and probabilistic perspective, Encyclopaedia Math. Sci., 102, Springer-Verlag, Berlin, 2005. · Zbl 1060.37020 · doi:10.1007/b138174
[11] W. Boyd, The structure of Cherry flows, Ergodic Theory Dynam. Systems 25 (1985), 27–46. · Zbl 0578.58032
[12] C. M. Carballo and C. Morales, Omega-limit sets close to singular-hyperbolic attractors, Illinois J. Math. 48 (2004), 645–663. · Zbl 1065.37024
[13] R. W. J. Colmenarez, Nonuniform hyperbolicity for singular hyperbolic attractors, Trans. Amer. Math. Soc. 357 (2005), 4131–4140. · Zbl 1134.37327 · doi:10.1090/S0002-9947-04-03706-7
[14] ——, Existence of SRB measures for singular hyperbolic attractors, preprint, 2005.
[15] J. Guckenheimer and R. Williams, Structural stability of Lorenz attractors, Inst. Hautes Études Sci. Publ. Math. 50 (1979), 59–72. · Zbl 0436.58018 · doi:10.1007/BF02684769
[16] B. Hasselblatt and A. Katok, Introduction to the modern theory of dynamical systems. With a supplementary chapter by Katok and Leonardo Mendoza, Encyclopedia Math. Appl., 54, Cambridge Univ. Press, Cambridge, 1995. · Zbl 0878.58020
[17] M. Hirsch, C. Pugh, and M. Shub, Invariant manifolds, Lecture Notes in Math., 583, Springer-Verlag, New York, 1977. · Zbl 0355.58009
[18] R. Labarca and M. J. Pacifico, Stability of singularity horseshoes, Topology 25 (1986), 337–352. · Zbl 0611.58033 · doi:10.1016/0040-9383(86)90048-0
[19] C. Morales, The explosion of singular-hyperbolic attractors, Ergodic Theory Dynam. Systems 24 (2004), 577–591. · Zbl 1067.37046 · doi:10.1017/S014338570300052X
[20] ——, A note on periodic orbits for singular-hyperbolic flows, Discrete Contin. Dynam. Systems 11 (2004), 615–619. · Zbl 1073.37031 · doi:10.3934/dcds.2004.11.615
[21] ——, Strong stable manifolds for sectional-hyperbolic sets, Discrete Contin. Dynam. Systems 17 (2007), 553–560. · Zbl 1137.37015 · doi:10.3934/dcds.2007.17.553
[22] ——, Example of singular-hyperbolic attracting sets, Dyn. Syst. 22 (2007), 339–349. · Zbl 1153.37016 · doi:10.1080/14689360701210939
[23] C. Morales and M. J. Pacifico, Mixing attractors for \(3\) -flows, Nonlinearity 14 (2001), 359–378. · Zbl 1026.37015 · doi:10.1088/0951-7715/14/2/310
[24] ——, A dichotomy for three-dimensional vector fields, Ergodic Theory Dynam. Systems 23 (2003), 1575–1600. · Zbl 1040.37014 · doi:10.1017/S0143385702001621
[25] C. Morales, M. J. Pacifico, and E. R. Pujals, On \(C^1\) robust singular transitive sets for three-dimensional flows, C. R. Acad. Sci. Paris Sér. I Math. 326 (1998), 81–86. · Zbl 0918.58036 · doi:10.1016/S0764-4442(97)82717-6
[26] ——, Singular-hyperbolic systems, Proc. Amer. Math. Soc. 127 (1999), 3393–3401. JSTOR: · Zbl 0924.58068 · doi:10.1090/S0002-9939-99-04936-9
[27] ——, Robust transitive singular sets for 3-flows are partially hyperbolic attractors or repellers, Ann. of Math. (2) 160 (2004), 375–432. · Zbl 1071.37022 · doi:10.4007/annals.2004.160.375
[28] C. Morales and E. R. Pujals, Singular strange attractors on the boundary of Morse–Smale systems, Ann. Sci. École Norm. Sup. (4) 30 (1997), 693–717. · Zbl 0911.58022 · doi:10.1016/S0012-9593(97)89936-3
[29] J. Palis and W. de Melo, Geometric theory of dynamical systems. An introduction (A. K. Manning, transl.), Springer-Verlag, New York, 1982. · Zbl 0491.58001
[30] L. P. Shilnikov and D. V. Turaev, An example of a wild strange attractor, Mat. Sb. (N.S.) 189 (1998), 137–160 (Russian); English translation in Sb. Math. 189 (1998), 291–314. · Zbl 0927.37017 · doi:10.1070/SM1998v189n02ABEH000300
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.