×

Finite difference methods for Caputo-Hadamard fractional differential equations. (English) Zbl 1453.65186

Summary: In this paper, we study finite difference methods for fractional differential equations (FDEs) with Caputo-Hadamard derivatives. First, smoothness properties of the solution are investigated. The fractional rectangular, \(L_{\log,1}\) interpolation, and modified predictor-corrector methods for Caputo-Hadamard fractional ordinary differential equations (FODEs) are proposed through approximating the corresponding equivalent Volterra integral equations. The stability and error estimate of the derived methods are proved as well. Then, we investigate finite difference methods for fractional partial differential equations (FPDEs) with Caputo-Hadamard derivative. By applying the constructed \(L1\) scheme for approximating the time fractional derivative, a semi-discrete difference scheme is derived. The stability and convergence analysis are shown too in detail. Furthermore, a fully discrete scheme is established by the standard second-order difference scheme in spacial direction. Stability and error estimate are also presented. The numerical experiments are displayed to verify the theoretical results.

MSC:

65L12 Finite difference and finite volume methods for ordinary differential equations
34A08 Fractional ordinary differential equations
65L20 Stability and convergence of numerical methods for ordinary differential equations
65L70 Error bounds for numerical methods for ordinary differential equations
Full Text: DOI

References:

[1] Adjabi, Y.; Jarad, F.; Baleanu, D.; Abdeljawad, T., On Cauchy problems with Caputo Hadamard fractional derivatives, J. Comput. Anal. Appl., 21, 661-681 (2016) · Zbl 1336.34010
[2] Ahmad, B.; Alsaedi, A.; Ntouyas, SK; Tariboon, J., Hadamard-Type Fractional Differential Equations. Inclusions and Inequalities (2017), Cham: Springer, Cham · Zbl 1370.34002
[3] Diethelm, K.: The Analysis of Fractional Differential Equations. Lecture Notes in Mathematics, Springer, Berlin (2010) · Zbl 1215.34001
[4] Diethelm, K.; Ford, NJ; Freed, AD, Detailed error analysis for a fractional Adams method, Numer. Algorithms, 36, 31-52 (2004) · Zbl 1055.65098 · doi:10.1023/B:NUMA.0000027736.85078.be
[5] Garrappa, R., Trapezoidal methods for fractional differential equations: theoretical and computational aspects, Math. Comput. Simul., 110, 96-112 (2015) · Zbl 1540.65194 · doi:10.1016/j.matcom.2013.09.012
[6] Gohar, M.; Li, CP; Yin, CT, On Caputo-Hadamard fractional differential equations, Int. J. Comput. Math., 97, 7, 1459-1483 (2020) · Zbl 07476005 · doi:10.1080/00207160.2019.1626012
[7] Gong, Z.Q., Qian, D.L., Li, C.P., Guo, P.: On the Hadamard type fractional differential system. In: Baleanu, D., Tenreiro Machado, J.A. (eds.) Fractional Dynamics and Control, pp. 159-171. Springer, New York (2012)
[8] Hadamard, J., Essai sur létude des fonctions données par leur développement de Taylor, J. Math. Pures Appl., 8, 101-186 (1892) · JFM 24.0359.01
[9] Jarad, F.; Abdeljawad, T.; Baleanu, D., Caputo-type modification of the Hadamard fractional derivatives, Adv. Differ. Equ., 2012, 142 (2012) · Zbl 1346.26002 · doi:10.1186/1687-1847-2012-142
[10] Kilbas, AA, Hadamard-type fractional calculus, J. Korean Math. Soc., 38, 1191-1204 (2001) · Zbl 1018.26003
[11] Kilbas, AA; Srivastava, HM; Trujillo, JJ, Theory and Applications of Fractional Differential Equations (2006), Amsterdam: Elsevier Science, Amsterdam · Zbl 1092.45003
[12] Li, CP; Yi, Q.; Chen, A., Finite difference methods with non-uniform meshes for nonlinear fractional differential equations, J. Comput. Phys., 316, 614-631 (2016) · Zbl 1349.65246 · doi:10.1016/j.jcp.2016.04.039
[13] Li, CP; Zeng, FH, Numerical Methods for Fractional Calculus (2015), Boca Raton: Chapman and Hall/CRC, Boca Raton · Zbl 1326.65033
[14] Li, M.; Huang, CM, ADI Galerkin FEMs for the 2D nonlinear time-space fractional diffusion-wave equation, Int. J. Model. Simulat. Sci. Comput., 8, 1750025 (2017) · doi:10.1142/S1793962317500258
[15] Li, M.; Huang, CM; Wang, PD, Galerkin finite element method for nonlinear fractional Schrödinger equations, Numer. Algorithms, 74, 499-525 (2017) · Zbl 1359.65208 · doi:10.1007/s11075-016-0160-5
[16] Ma, L.; Li, CP, On Hadamard fractional calculus, Fractals, 25, 1750033 (2017) · Zbl 1371.26009 · doi:10.1142/S0218348X17500335
[17] Ma, L.; Li, CP, On finite part integrals and Hadamard-type fractional derivatives, J. Comput. Nonlinear Dyn., 13, 090905 (2018) · doi:10.1115/1.4037930
[18] Oldham, KB; Spanier, J., The Fractional Calculus (1974), New York: Academic Press, New York · Zbl 0292.26011
[19] Podlubny, I., Fractional Differential Equations (1999), New York: Academic Press, New York · Zbl 0918.34010
[20] Zhang, YN; Sun, ZZ; Liao, HL, Finite difference methods for the time fractional diffusion equation on non-uniform meshes, J. Comput. Phys., 265, 195-210 (2014) · Zbl 1349.65359 · doi:10.1016/j.jcp.2014.02.008
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.