×

Exact integrability conditions for cotangent vector fields. (English) Zbl 1530.35242

Summary: In Quantum Hydro-Dynamics the following problem is relevant: let \((\sqrt{\rho },\Lambda ) \in{W^{1,2}}({\mathbb{R}}^d,{\mathcal{L}}^d,{\mathbb{R}}^+) \times L^2({\mathbb{R}}^d,\mathcal L^d,{\mathbb{R}}^d)\) be a finite energy hydrodynamics state, i.e. \( \Lambda = 0\) when \(\rho = 0\) and \[ E = \int_{{\mathbb{R}}^d} \frac{1}{2} \big | \nabla \sqrt{\rho } \big |^2 + \frac{1}{2} \Lambda^2 {\mathcal{L}}^d < \infty. \] The question is under which conditions there exists a wave function \(\psi \in{W^{1,2}}({\mathbb{R}}^d,{\mathcal{L}}^d,{\mathbb{C}})\) such that \[ \sqrt{\rho } = |\psi |, \quad J = \sqrt{\rho } \Lambda = \operatorname{Im} \big ( {\bar{\psi }} \nabla \psi ). \] The second equation gives for \(\psi = \sqrt{\rho } w\) smooth, \(|w| = 1\), that \(i \Lambda = \sqrt{\rho } {\bar{w}} \nabla w\). Interpreting \(\rho{\mathcal{L}}^d\) as a measure in the metric space \({\mathbb{R}}^d\), this question can be stated in generality as follows: given metric measure space \((X,d,\mu )\) and a cotangent vector field \(v \in L^2(T^* X)\), is there a function \(w \in{W^{1,2}}(X,\mu ,{\mathbb{S}}^1)\) such that \[ dw = i w v. \] Under some assumptions on the metric measure space \((X,d,\mu )\) (conditions which are verified on Riemann manifolds with the measure \(\mu = \rho \text{Vol}\) or more generally on non-branching \(\text{MCP}(K,N)\)), we show that the necessary and sufficient conditions for the existence of \(w\) is that (in the case of differentiable manifold) \[ \int v(\gamma (t)) \cdot{\dot{\gamma }} (t)\, dt \in 2\pi{\mathbb{Z}} \] for \(\pi \)-a.e. \( \gamma \), where \(\pi\) is a test plan supported on closed curves. This condition generalizes the condition that the vorticity is quantized. We also give a representation of every possible solution. In particular, we deduce that the wave function \(\psi = \sqrt{\rho } w\) is in \(W^{1,2}(X,\mu ,{\mathbb{C}})\) whenever \(\sqrt{\rho } \in W^{1,2}(X,\mu ,{\mathbb{R}}^+)\).

MSC:

35Q40 PDEs in connection with quantum mechanics
76Y05 Quantum hydrodynamics and relativistic hydrodynamics
37K10 Completely integrable infinite-dimensional Hamiltonian and Lagrangian systems, integration methods, integrability tests, integrable hierarchies (KdV, KP, Toda, etc.)
35R06 PDEs with measure

References:

[1] Ambrosio, L.; Colombo, M.; Di Marino, S., Sobolev spaces in metric measure spaces: reflexivity and lower semicontinuity of slope, Adv. Stud. Pure Math., 67, 1-58 (2015) · Zbl 1370.46018
[2] Ambrosio, L.; Di Marino, S.; Savaré, G., On the duality between p-modulus and probability measures, JEMS, 17, 8, 1817-1853 (2015) · Zbl 1331.28005 · doi:10.4171/jems/546
[3] Antonelli, P., Marcati, P.: An introduction to the mathematical theory of quantum fluids. Springer UMI Lecture Notes (to appear) · Zbl 1353.35230
[4] Antonelli, P., Marcati, P., Zheng, H.: An instrinsically hydrodynamic approach to multidimensional QHD system · Zbl 1510.35228
[5] Antonelli, P.; Marcati, P.; Zheng, H., Genuine hydrodynamic analysis to the 1-D QHD system: existence, dispersion and stability, Commun. Math. Phys., 383, 2113-2161 (2021) · Zbl 1467.35253 · doi:10.1007/s00220-021-03998-z
[6] Bianchini, S.; Caravenna, L., On the extremality, uniqueness and optimality of transference plans, Bull. Inst. Math. Acad. Sin. (N.S.), 4, 4, 353-454 (2009) · Zbl 1207.90015
[7] Bogachev, VI, Measure Theory (2016), Berlin: Springer, Berlin
[8] Fremlin, D.H.: Measure Theory, vol. 3. Torres Fremlin, 332Tb (2002) · Zbl 1165.28002
[9] Fremlin, D.H.: Measure Theory, vol. 4. Torres Fremlin, 332Tb (2002) · Zbl 1165.28002
[10] Gigli, N.: Nonsmooth Differential Geometry—An Approach Tailored for Spaces with Ricci Curvature Bounded from Below, vol. 251. Memoir AMS
[11] Gigli, N.; Pasqualetto, E., Lectures on Nonsmooth Differential Geometry (2020), Berlin: Springer, Berlin · Zbl 1452.53002 · doi:10.1007/978-3-030-38613-9
[12] Kellerer, HG, Duality theorems for marginals problems, Z. Wahrcsh. Verw. Gebiete, 67, 4, 399-432 (1984) · Zbl 0535.60002 · doi:10.1007/BF00532047
[13] Lott, J.; Villani, C., Weak curvature conditions and functional inequalities, J. Funct. Anal., 245, 311-333 (2007) · Zbl 1119.53028 · doi:10.1016/j.jfa.2006.10.018
[14] Ohta, S-I, On the measure contraction property of metric measure spaces, Comment. Math. Helv., 82, 805-828 (2007) · Zbl 1176.28016 · doi:10.4171/CMH/110
[15] Rajala, T., Interpolated measures with bounded density in metric spaces satisfying the curvature-dimension conditions of sturm, J. Funct. Anal., 263, 896-924 (2012) · Zbl 1260.53076 · doi:10.1016/j.jfa.2012.05.006
[16] Srivastava, AM, A Course on Borel Sets (1998), Berlin: Springer, Berlin · Zbl 0903.28001 · doi:10.1007/978-3-642-85473-6
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.