×

Singular Weyl’s law with Ricci curvature bounded below. (English) Zbl 1528.53040

Weyl’s law describes the asymptotic behavior of eigenvalues of the Laplace-Beltrami operator. Its study has a long rich history extended over a century, and plays an important role both in mathematics and physics. For a closed Riemannian manifold \(M^n\), the minus Laplacian \(- \Delta^g\) has discrete unbounded spectrum where the eigenvalues \(\lambda_i\) are counted with multiplicities. The authors establish two surprising types of Weyl’s law for some compact limit spaces. The one type could have power growth of any order even bigger than one. The other one has an order corrected by logarithm similar to some fractals even though the space is two dimensional. The limits in both types can be written in terms of the singular sets null capacities instead of regular sets.

MSC:

53C23 Global geometric and topological methods (à la Gromov); differential geometric analysis on metric spaces
58C40 Spectral theory; eigenvalue problems on manifolds
58J50 Spectral problems; spectral geometry; scattering theory on manifolds
35K08 Heat kernel

References:

[1] Ambrosio, Luigi, Proceedings of the International Congress of Mathematicians-Rio de Janeiro 2018. Vol. I. Plenary lectures. Calculus, heat flow and curvature-dimension bounds in metric measure spaces, 301-340 (2018), World Sci. Publ., Hackensack, NJ · Zbl 1475.30129
[2] Ambrosio, Luigi, Calculus and heat flow in metric measure spaces and applications to spaces with Ricci bounds from below, Invent. Math., 289-391 (2014) · Zbl 1312.53056 · doi:10.1007/s00222-013-0456-1
[3] Ambrosio, Luigi, Metric measure spaces with Riemannian Ricci curvature bounded from below, Duke Math. J., 1405-1490 (2014) · Zbl 1304.35310 · doi:10.1215/00127094-2681605
[4] Ambrosio, Luigi, Local spectral convergence in \(\text{RCD}^*(K,N)\) spaces, Nonlinear Anal., part A, 1-23 (2018) · Zbl 1402.53034 · doi:10.1016/j.na.2017.04.003
[5] Ambrosio, Luigi, Short-time behavior of the heat kernel and Weyl’s law on \(\text{RCD}^*(K,N)\) spaces, Ann. Global Anal. Geom., 97-119 (2018) · Zbl 1390.58015 · doi:10.1007/s10455-017-9569-x
[6] Ambrosio, Luigi, Nonlinear diffusion equations and curvature conditions in metric measure spaces, Mem. Amer. Math. Soc., v+121 pp. (2019) · Zbl 1477.49003 · doi:10.1090/memo/1270
[7] Atiyah, M. F., Spectral asymmetry and Riemannian geometry. I, Math. Proc. Cambridge Philos. Soc., 43-69 (1975) · Zbl 0297.58008 · doi:10.1017/S0305004100049410
[8] Barlow, M. T., Transition density estimates for Brownian motion on scale irregular Sierpinski gaskets, Ann. Inst. H. Poincar\'{e} Probab. Statist., 531-557 (1997) · Zbl 0903.60072 · doi:10.1016/S0246-0203(97)80104-5
[9] Bella\"{\i }che, Andr\'{e}, Sub-Riemannian geometry. The tangent space in sub-Riemannian geometry, Progr. Math., 1-78 (1996), Birkh\"{a}user, Basel · Zbl 0862.53031 · doi:10.1007/978-3-0348-9210-0\_1
[10] Bj\"{o}rn, Anders, Nonlinear potential theory on metric spaces, EMS Tracts in Mathematics, xii+403 pp. (2011), European Mathematical Society (EMS), Z\"{u}rich · Zbl 1231.31001 · doi:10.4171/099
[11] Bordoni, Manlio, Comparing heat operators through local isometries or fibrations, Bull. Soc. Math. France, 151-178 (2000) · Zbl 0968.58021
[12] Boscain, U., Spectral analysis and the Aharonov-Bohm effect on certain almost-Riemannian manifolds, Comm. Partial Differential Equations, 32-50 (2016) · Zbl 1342.35196 · doi:10.1080/03605302.2015.1095766
[13] Brena, Camillo, Weakly non-collapsed RCD spaces are strongly non-collapsed, J. Reine Angew. Math., 215-252 (2023) · Zbl 1522.53026 · doi:10.1515/crelle-2022-0071
[14] Bru\'{e}, Elia, Constancy of the dimension for \(\text{RCD}(K,N)\) spaces via regularity of Lagrangian flows, Comm. Pure Appl. Math., 1141-1204 (2020) · Zbl 1442.35054 · doi:10.1002/cpa.21849
[15] Cavalletti, Fabio, The globalization theorem for the curvature-dimension condition, Invent. Math., 1-137 (2021) · Zbl 1479.53049 · doi:10.1007/s00222-021-01040-6
[16] Chavel, Isaac, Eigenvalues in Riemannian geometry, Pure and Applied Mathematics, xiv+362 pp. (1984), Academic Press, Inc., Orlando, FL · Zbl 0551.53001
[17] Cheeger, Jeff, Analytic torsion and the heat equation, Ann. of Math. (2), 259-322 (1979) · Zbl 0412.58026 · doi:10.2307/1971113
[18] Cheeger, J., Differentiability of Lipschitz functions on metric measure spaces, Geom. Funct. Anal., 428-517 (1999) · Zbl 0942.58018 · doi:10.1007/s000390050094
[19] Cheeger, Jeff, Lower bounds on Ricci curvature and the almost rigidity of warped products, Ann. of Math. (2), 189-237 (1996) · Zbl 0865.53037 · doi:10.2307/2118589
[20] Cheeger, Jeff, On the structure of spaces with Ricci curvature bounded below. I, J. Differential Geom., 406-480 (1997) · Zbl 0902.53034
[21] Cheeger, Jeff, On the structure of spaces with Ricci curvature bounded below. II, J. Differential Geom., 13-35 (2000) · Zbl 1027.53042
[22] Cheeger, Jeff, On the structure of spaces with Ricci curvature bounded below. III, J. Differential Geom., 37-74 (2000) · Zbl 1027.53043
[23] Yacine Chitour, Dario Prandi and Luca Rizzi, Weyl’s law for singular Riemannian manifolds, 1903.05639, 2019.
[24] Colding, Tobias Holck, Sharp H\"{o}lder continuity of tangent cones for spaces with a lower Ricci curvature bound and applications, Ann. of Math. (2), 1173-1229 (2012) · Zbl 1260.53067 · doi:10.4007/annals.2012.176.2.10
[25] Dai, Xianzhe, Witten deformation on non-compact manifolds: heat kernel expansion and local index theorem, Math. Z., Paper No. 5, 28 pp. (2023) · Zbl 1503.58010 · doi:10.1007/s00209-022-03150-0
[26] Xianzhe Dai and Junrong Yan, Non-semiclassical Weyl Law for Schr\"odinger Operators on Non-compact Manifolds, preprint, 2022. · Zbl 1503.58010
[27] Davies, E. B., Non-Gaussian aspects of heat kernel behaviour, J. London Math. Soc. (2), 105-125 (1997) · Zbl 0879.35064 · doi:10.1112/S0024610796004607
[28] Qin Deng, H\"older continuity of tangent cones in \(\operatorname RCD(K,N)\) spaces and applications to non-branching, 2009.07956, 2020.
[29] De Philippis, Guido, Non-collapsed spaces with Ricci curvature bounded from below, J. \'{E}c. polytech. Math., 613-650 (2018) · Zbl 1409.53038 · doi:10.5802/jep.80
[30] Colin de Verdi\`ere, Yves, Spectral asymptotics for sub-Riemannian Laplacians, I: Quantum ergodicity and quantum limits in the 3-dimensional contact case, Duke Math. J., 109-174 (2018) · Zbl 1388.35137 · doi:10.1215/00127094-2017-0037
[31] Ding, Yu, Heat kernels and Green’s functions on limit spaces, Comm. Anal. Geom., 475-514 (2002) · Zbl 1018.58013 · doi:10.4310/CAG.2002.v10.n3.a3
[32] Feller, William, An introduction to probability theory and its applications. Vol. II., xxiv+669 pp. (1971), John Wiley & Sons, Inc., New York-London-Sydney · Zbl 0219.60003
[33] Erbar, Matthias, On the equivalence of the entropic curvature-dimension condition and Bochner’s inequality on metric measure spaces, Invent. Math., 993-1071 (2015) · Zbl 1329.53059 · doi:10.1007/s00222-014-0563-7
[34] Garofalo, Nicola, Li-Yau and Harnack type inequalities in \(\mathsf{RCD}^*(K,N)\) metric measure spaces, Nonlinear Anal., 721-734 (2014) · Zbl 1286.58016 · doi:10.1016/j.na.2013.10.002
[35] Gigli, Nicola, On the differential structure of metric measure spaces and applications, Mem. Amer. Math. Soc., vi+91 pp. (2015) · Zbl 1325.53054 · doi:10.1090/memo/1113
[36] Gigli, Nicola, Lectures on nonsmooth differential geometry, SISSA Springer Series, xi+204 pp. ([2020] ©2020), Springer, Cham · Zbl 1452.53002 · doi:10.1007/978-3-030-38613-9
[37] Gigli, Nicola, Optimal maps and exponentiation on finite-dimensional spaces with Ricci curvature bounded from below, J. Geom. Anal., 2914-2929 (2016) · Zbl 1361.53036 · doi:10.1007/s12220-015-9654-y
[38] Grigor’yan, Alexander, Heat kernel and analysis on manifolds, AMS/IP Studies in Advanced Mathematics, xviii+482 pp. (2009), American Mathematical Society, Providence, RI; International Press, Boston, MA · Zbl 1206.58008 · doi:10.1090/amsip/047
[39] Han, Bang-Xian, Angles between curves in metric measure spaces, Anal. Geom. Metr. Spaces, 47-68 (2017) · Zbl 1391.53051 · doi:10.1515/agms-2017-0003
[40] Honda, Shouhei, A weakly second-order differential structure on rectifiable metric measure spaces, Geom. Topol., 633-668 (2014) · Zbl 1286.53045 · doi:10.2140/gt.2014.18.633
[41] Honda, Shouhei, New differential operator and noncollapsed RCD spaces, Geom. Topol., 2127-2148 (2020) · Zbl 1452.53041 · doi:10.2140/gt.2020.24.2127
[42] Ivrii, Victor, 100 years of Weyl’s law, Bull. Math. Sci., 379-452 (2016) · Zbl 1358.35075 · doi:10.1007/s13373-016-0089-y
[43] Jakobson, Dmitry, Emerging applications of number theory. Classical limits of eigenfunctions for some completely integrable systems, IMA Vol. Math. Appl., 329-354 (1996), Springer, New York · Zbl 1071.58505 · doi:10.1007/978-1-4612-1544-8\_13
[44] Jiang, Renjin, The Li-Yau inequality and heat kernels on metric measure spaces, J. Math. Pures Appl. (9), 29-57 (2015) · Zbl 1316.53049 · doi:10.1016/j.matpur.2014.12.002
[45] Jiang, Renjin, Heat kernel bounds on metric measure spaces and some applications, Potential Anal., 601-627 (2016) · Zbl 1339.53043 · doi:10.1007/s11118-015-9521-2
[46] Juillet, Nicolas, Sub-Riemannian structures do not satisfy Riemannian Brunn-Minkowski inequalities, Rev. Mat. Iberoam., 177-188 (2021) · Zbl 1461.53020 · doi:10.4171/rmi/1205
[47] Kapovitch, Vitali, On the structure of RCD spaces with upper curvature bounds, Math. Z., 3469-3502 (2022) · Zbl 1502.53052 · doi:10.1007/s00209-022-03015-6
[48] Kapovitch, Vitali, On the topology and the boundary of \(N\)-dimensional \(\mathsf{RCD}(K,N)\) spaces, Geom. Topol., 445-495 (2021) · Zbl 1466.53050 · doi:10.2140/gt.2021.25.445
[49] Kitabeppu, Yu, Characterization of low dimensional \(RCD^*(K,N)\) spaces, Anal. Geom. Metr. Spaces, 187-215 (2016) · Zbl 1348.53046 · doi:10.1515/agms-2016-0007
[50] Li, Peter, Geometric analysis, Cambridge Studies in Advanced Mathematics, x+406 pp. (2012), Cambridge University Press, Cambridge · Zbl 1246.53002 · doi:10.1017/CBO9781139105798
[51] Lianantonakis, Maria, On the eigenvalue counting function for weighted Laplace-Beltrami operators, J. Geom. Anal., 299-322 (2000) · Zbl 0982.58021 · doi:10.1007/BF02921827
[52] Lott, John, Some geometric properties of the Bakry-\'{E}mery-Ricci tensor, Comment. Math. Helv., 865-883 (2003) · Zbl 1038.53041 · doi:10.1007/s00014-003-0775-8
[53] Lott, John, Ricci curvature for metric-measure spaces via optimal transport, Ann. of Math. (2), 903-991 (2009) · Zbl 1178.53038 · doi:10.4007/annals.2009.169.903
[54] Lytchak, Alexander, Ricci curvature in dimension 2, J. Eur. Math. Soc. (JEMS), 845-867 (2023) · Zbl 1518.53043 · doi:10.4171/jems/1196
[55] Milnor, J., A note on curvature and fundamental group, J. Differential Geometry, 1-7 (1968) · Zbl 0162.25401
[56] Menguy, X., Examples of nonpolar limit spaces, Amer. J. Math., 927-937 (2000) · Zbl 0981.53019
[57] Mondino, Andrea, Structure theory of metric measure spaces with lower Ricci curvature bounds, J. Eur. Math. Soc. (JEMS), 1809-1854 (2019) · Zbl 1468.53039 · doi:10.4171/JEMS/874
[58] Andrea Mondino and Daniele Semola, Weak Laplacian bounds and minimal boundaries in non-smooth spaces with Ricci curvature lower bounds, 2107.12344v3, to appear in Mem. Amer. Math. Soc., 2021.
[59] Mondino, Andrea, On the universal cover and the fundamental group of an \(\text{RCD}^*(K,N)\)-space, J. Reine Angew. Math., 211-237 (2019) · Zbl 1422.53033 · doi:10.1515/crelle-2016-0068
[60] Pan, Jiayin, The Grushin hemisphere as a Ricci limit space with curvature \(\ge 1\), Proc. Amer. Math. Soc. Ser. B, 71-75 (2023) · Zbl 1514.53087 · doi:10.1090/bproc/160
[61] Pan, Jiayin, Examples of Ricci limit spaces with non-integer Hausdorff dimension, Geom. Funct. Anal., 676-685 (2022) · Zbl 1496.53104 · doi:10.1007/s00039-022-00598-4
[62] Jiayin Pan and Guofang Wei, Examples of open manifolds with positive Ricci curvature and non-proper Busemann functions, 2203.15211, 2022 · Zbl 1496.53104
[63] Rajala, Tapio, Local Poincar\'{e} inequalities from stable curvature conditions on metric spaces, Calc. Var. Partial Differential Equations, 477-494 (2012) · Zbl 1250.53040 · doi:10.1007/s00526-011-0442-7
[64] Sturm, Karl-Theodor, Analysis on local Dirichlet spaces. II. Upper Gaussian estimates for the fundamental solutions of parabolic equations, Osaka J. Math., 275-312 (1995) · Zbl 0854.35015
[65] Sturm, K. T., Analysis on local Dirichlet spaces. III. The parabolic Harnack inequality, J. Math. Pures Appl. (9), 273-297 (1996) · Zbl 0854.35016
[66] Sturm, Karl-Theodor, On the geometry of metric measure spaces. II, Acta Math., 133-177 (2006) · Zbl 1106.53032 · doi:10.1007/s11511-006-0003-7
[67] Zhu Ye, Maximal first Betti number rigidity of noncompact \(\operatorname RCD(0,N)\) spaces, 2301.04600, 2023.
[68] Zelditch, Steve, Eigenfunctions of the Laplacian on a Riemannian manifold, CBMS Regional Conference Series in Mathematics, xiv+394 pp. (2017), Published for the Conference Board of the Mathematical Sciences, Washington, DC; by the American Mathematical Society, Providence, RI · Zbl 1408.58001
[69] Zhang, Hui-Chun, Weyl’s law on \(RCD^*(K,N)\) metric measure spaces, Comm. Anal. Geom., 1869-1914 (2019) · Zbl 1464.53052 · doi:10.4310/CAG.2019.v27.n8.a8
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.