×

Indeterminacy estimates, eigenfunctions and lower bounds on Wasserstein distances. (English) Zbl 1505.53058

Summary: In the paper we prove two inequalities in the setting of \(\mathsf{RCD}(K, \infty)\) spaces using similar techniques. The first one is an indeterminacy estimate involving the \(p\)-Wasserstein distance between the positive part and the negative part of an \(L^\infty\) function and the measure of the interface between the positive part and the negative part. The second one is a conjectured lower bound on the \(p\)-Wasserstein distance between the positive and negative parts of a Laplace eigenfunction.

MSC:

53C23 Global geometric and topological methods (à la Gromov); differential geometric analysis on metric spaces
53C21 Methods of global Riemannian geometry, including PDE methods; curvature restrictions
35P05 General topics in linear spectral theory for PDEs
28A75 Length, area, volume, other geometric measure theory
35A23 Inequalities applied to PDEs involving derivatives, differential and integral operators, or integrals
58J50 Spectral problems; spectral geometry; scattering theory on manifolds
51K05 General theory of distance geometry

References:

[1] Ambrosio , L.: Calculus, heat flow and curvature-dimension bounds in metric measure spaces. In: Proceedings of the ICM Rio de Janeiro, Vol. 1, pp. 301-340(2018) · Zbl 1475.30129
[2] Ambrosio, L.; Gigli, N.; Mondino, A.; Rajala, T., Riemannian Ricci curvature lower bounds in metric measure spaces with -finite measure, Trans. Amer. Math. Soc., 367, 7, 4661-4701 (2015) · Zbl 1317.53060 · doi:10.1090/S0002-9947-2015-06111-X
[3] Ambrosio, L.; Gigli, N.; Savaré, G., Bakry-Émery curvature-dimension condition and Riemannian Ricci curvature bounds, Ann. Probab., 43, 1, 339-404 (2015) · Zbl 1307.49044 · doi:10.1214/14-AOP907
[4] Ambrosio, L.; Gigli, N.; Savaré, G., Metric measure spaces with Riemannian Ricci curvature bounded from below, Duke Math. J., 163, 1405-1490 (2014) · Zbl 1304.35310 · doi:10.1215/00127094-2681605
[5] Bakry, D.: Functional inequalities for Markov semigroups, Probability Measures on Groups: Recent Directions and Trends, 91-147. Tata Inst. Fund. Res, Mumbai (2006) · Zbl 1148.60057
[6] Bakry, D., Gentil, I., Ledoux, M.: Analysis and Geometry of Markov Diffusion Operators. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 348. Springer, Cham (2014) · Zbl 1376.60002
[7] Carroll, T.; Massaneda, X.; Ortega-Cerdá, J., An enhanced uncertainty principle for the Vaserstein distance, Bull. Lond. Math. Soc., 52, 6, 1158-1173 (2020) · Zbl 1460.28003 · doi:10.1112/blms.12390
[8] Cavalletti , F., Farinelli, S.: Indeterminacy estimates and the size of nodal sets in singular spaces. Adv. Math. 389 (2021) · Zbl 1471.49032
[9] Cheeger, J., Differentiability of Lipschitz functions on metric measure spaces, Geom. Funct. Anal., 9, 428-517 (1999) · Zbl 0942.58018 · doi:10.1007/s000390050094
[10] De Ponti, N.; Mondino, A., Sharp Cheeger-Buser type inequalities in RCD \((K, \infty )\) Spaces, J. Geom. An., 31, 2416-2438 (2021) · Zbl 1475.53040 · doi:10.1007/s12220-020-00358-6
[11] De Ponti, N., Mondino, A., Semola,D.: The equality case of Cheeger’s and Buser’s inequalities on RCD spaces. J. Funct. Anal. 281(3) (2021) · Zbl 1462.35013
[12] Du, Q., Sagiv, A.: Minimizing optimal transport for functions with fixed-size nodal sets. Preprint arXiv:2110.14837 (2021)
[13] Gigli, N.; Mondino, A., SavaréConvergence of pointed non-compact metric measure spacesand stability of Ricci curvature bounds and heat flows, Proc. Lond. Math. Soc., 111, 5, 1071-1129 (2015) · Zbl 1398.53044
[14] Gigli, N., Pasqualetto, E.: Lectures on Nonsmooth Differential Geometry. Springer, SISSA Springer Series (2020) · Zbl 1452.53002
[15] Hellinger,E.: Neue Begründung der Theorie quadratischer Formen von unendlichvielen Veränderlichen. J.Reine Angew. Math. 136 (1909) · JFM 40.0393.01
[16] Liero, M.; Mielke, A.; Savaré, G., Optimal entropy-transport problems and a new Hellinger-Kantorovich distance between positive measures, Inventiones Mathematicae, 211, 969-1117 (2018) · Zbl 1412.49089 · doi:10.1007/s00222-017-0759-8
[17] Lott, J.; Villani, C., Ricci curvature for metric-measure spaces via optimal transport, Ann. Math., 2, 169, 903-991 (2009) · Zbl 1178.53038 · doi:10.4007/annals.2009.169.903
[18] Logunov, A., Nodal sets of Laplace eigenfunctions: polynomial upper estimates of the Hausdorff measure, Ann. Math., 187, 1, 221-239 (2018) · Zbl 1384.58020
[19] Logunov, A., Nodal sets of Laplace eigenfunctions: proof of Nadirashvili’s conjecture and of the lower bound in Yau’s conjecture, Ann. Math., 187, 1, 241-262 (2018) · Zbl 1384.58021
[20] Logunov, A.; Malinnikova, E., Review of Yau’s conjecture on zero sets of Laplace eigenfunctions, Curr. Dev. Math., 2018, 179-212 (2018) · Zbl 1453.35052 · doi:10.4310/CDM.2018.v2018.n1.a4
[21] Logunov, A.; Malinnikova, E.; Nadirashvili, N.; Nazarov, F., The sharp upper bound for the area of the nodal sets of Dirichlet Laplace Eigenfunctions, Geom. Funct. Anal., 31, 1219-1244 (2021) · Zbl 1486.35011 · doi:10.1007/s00039-021-00581-5
[22] Luise, G., Savaré, G.: Contraction and regularizing properties of heat flows in metric measure spaces. Discrete and Continuous Dynamical Systems Series S, early access, doi:10.3934/dcdss.2020327, (2020) · Zbl 1459.49030
[23] Matusita, K., Distances and decision rules, Ann. Inst. Stat. Math., 16, 305-320 (1964) · Zbl 0128.38502 · doi:10.1007/BF02868578
[24] Mukherjee, M.: A sharp Wasserstein uncertainty principle for Laplace eigenfunctions. Preprint arXiv:2103.11633 (2021)
[25] Petrunin, A., Alexandrov meets Lott-Sturm-Villani, Münster J. Math., 4, 53-64 (2011) · Zbl 1247.53038
[26] Savaré, G.: Self-improvement of the Bakry-Émery condition and Wasserstein contraction of the heat flow in \(RCD (K, \infty )\) metric measure spaces. Discrete Continu. Dyn. Syst. A 34(4), 1641-1661 . doi:10.3934/dcds.2014.34.1641 · Zbl 1275.49087
[27] Steinerberger, S., Wasserstein distance, Fourier series and applications, Monatshefte für Mathematik, 194, 2, 305-338 (2021) · Zbl 1457.60005 · doi:10.1007/s00605-020-01497-2
[28] Steinerberger, S.: A metric Sturm-Liouville theory in two dimensions. Calc. Var. Partial Differ. Equ. 59(12) (2020) · Zbl 1431.28004
[29] Sagiv, A.; Steinerberger, S., Transport and interface: an uncertainty principle for the Wasserstein distance, SIAM J. Math. Anal., 52, 3, 3039-3051 (2020) · Zbl 1442.28005 · doi:10.1137/19M1296574
[30] Sturm, KT, On the geometry of metric measure spaces. I, Acta Math., 196, 65-131 (2006) · Zbl 1105.53035 · doi:10.1007/s11511-006-0002-8
[31] Villanim, C.: Optimal transport. Old and new. Grundlehren der mathematischen Wissenschaften, Vol. 338. Springer (2009) · Zbl 1156.53003
[32] Yau, S.T.: Problem section, in Seminar on Differential Geometry. Ann. of Math. Stud., 102, Princeton University Press, Princeton, pp. 669-706 (1982) · Zbl 0471.00020
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.