×

Convergence rates of solutions for elliptic reiterated homogenization problems. (English) Zbl 1459.35025

The paper under review deals with the asymptotic behavior of the solutions to reiterated homogenization problems with Neumann boundary conditions. Namely, the authors consider the problem \[ \left\{ \begin{array}{ll} L_\varepsilon u_\varepsilon =-\frac{\partial}{\partial x_i}\Bigg(a_{ij}(x/\varepsilon,x/\varepsilon^2)\frac{\partial u_\varepsilon}{\partial x_j}\Bigg)=f & \mathrm{in}\ \Omega,\\ \frac{\partial u_\varepsilon}{\partial \nu_\varepsilon}=0 & \mathrm{on}\ \partial \Omega, \end{array} \right. \] where \(\Omega\) is a bounded \(C^{1,1}\) domain in \(\mathbb{R}^n\), \(\frac{\partial u_\varepsilon}{\partial \nu_\varepsilon}=n_ia_{ij}\frac{\partial u_\varepsilon}{\partial x_j}\) where \(n(x)\) is the outward unit normal to \(\partial \Omega\) at \(x\). The symmetric coefficient matrix \(A\) satisfies ellipticity, periodicity, and smoothness assumptions. The authors obtain convergence rates of the solution \(u_\varepsilon\) to the function \(u_0\) which solves the homogenized problem.

MSC:

35B27 Homogenization in context of PDEs; PDEs in media with periodic structure
35J25 Boundary value problems for second-order elliptic equations
35B40 Asymptotic behavior of solutions to PDEs
Full Text: DOI

References:

[1] Allaire, G., Shape optimization by the homogenization method (2002), Heidel berg, New York: Springer-Verlag, Heidel berg, New York · Zbl 0990.35001
[2] Allaire, G.; Briane, M., Multiscale divergence and reiterated homogenization, Proc. Roy. Soc. Edinburgh Sect. A, 126, 297-342 (1996) · Zbl 0866.35017 · doi:10.1017/S0308210500022757
[3] Avellaneda, M.; Lin, F. H., Homogenization of elliptic problem with L^p boundary data, Appl. Math. Optimization, 15, 93-107 (1987) · Zbl 0644.35034 · doi:10.1007/BF01442648
[4] Avellaneda, M.; Lin, F. H., Compactness methods in the theory of homogenization, Comm. Pure. Appl. Math., 40, 803-847 (1987) · Zbl 0632.35018 · doi:10.1002/cpa.3160400607
[5] A. Bensoussan, J. L. Lions, and G. Papanicolaou, Asymptotic analysis for periodic structures, Studies in North-Holland, 1978. · Zbl 0404.35001
[6] Bradies, A.; Lukkassen, D., Reiterated homogenization of integral functionals, Math. Models Methods Appl., 10, 1-25 (2000) · Zbl 1016.53048 · doi:10.1142/S0218202500000021
[7] Braicles, A.; Defranceschi, A., Homogenization of multiple integrals (1998), Oxford: Clarenoon, Oxford · Zbl 0911.49010
[8] Gilbarg, D.; Trudinger, N. S., Elliptic partial differential equations of second order (1998), Heidel berg, New York: Springer-Verlag, Heidel berg, New York · Zbl 0691.35001
[9] Gioranescu, D.; Paulin, J.; Saint, J., Homogenization of reticulated structures (1999), Heidel berg, New York: Springer-Verlag, Heidel berg, New York · Zbl 0929.35002
[10] D. Gioranescu and P. Donato, An introduction to homogenization, Oxford University, 1999. · Zbl 0939.35001
[11] Griso, G., Error estimate and unfolding for periodic homogenization, Asymptot. Anal., 40, 269-286 (2004) · Zbl 1071.35015
[12] Griso, G., Interior error estimate for periodic homogenization, Anal. Appl., 4, 61-79 (2006) · Zbl 1098.35016 · doi:10.1142/S021953050600070X
[13] Hornung, U., Homogenization and porous media (1997), Heidel berg, New York: Springer-Verlag, Heidel berg, New York · Zbl 0872.35002
[14] Jikov, V. V.; Kozlov, S. M.; Oleinik, O. A., Homogenziation of differnetial operators and integral functions (1994), Berlin: Springer-Verlag, Berlin · Zbl 0838.35001
[15] Kenig, C. E.; Lin, F. H.; Shen, Z. W., Homogenization of elliptic systems with Neumann boundary conditions, J. Amer. Math. Soc., 26, 901-937 (2013) · Zbl 1277.35166 · doi:10.1090/S0894-0347-2013-00769-9
[16] Kenig, C. E.; Lin, F. H.; Shen, Z. W., Convergence rates in L^2 for elliptic homogenization problems, Arch. Rational Mech. Anal., 203, 1009-1036 (2012) · Zbl 1258.35086 · doi:10.1007/s00205-011-0469-0
[17] Kenig, C. E.; Lin, F. H.; Shen, Z. W., Periodic homogenization of Green and Neumann functions, Comm. Pure. Appl. Math., 67, 1-44 (2014) · Zbl 1300.35030 · doi:10.1002/cpa.21482
[18] Lions, J. L., Exact controllability, stabilization and perturbations for distributed systems, SIAM Review, 30, 1-68 (1988) · Zbl 0644.49028 · doi:10.1137/1030001
[19] Lions, J. L.; Lukkassen, D.; Persson, L. E.; Wall, P., Reiterated homogenization ofmonotone operators, C. R. Acad. Sci. Paris, 330, 675-680 (2000) · Zbl 0953.35041 · doi:10.1016/S0764-4442(00)00242-1
[20] Andrianov, I. V.; Manevitch, L. I.; Oshmyan, V. G., Mechanics of periodically heterogeneous structures (2002), Heidel berg, New York: Springer-Verlag, Heidel berg, New York · Zbl 1006.74001
[21] Meunier, N.; Schaftingen, J. V., Reiterated homogenization for elliptic operators, C. R. Acad. Sci. Paris, 340, 209-214 (2005) · Zbl 1063.35027 · doi:10.1016/j.crma.2004.10.026
[22] Meunier, N.; Schaftingen, J. V., Periodic reiterated homogenization for elliptic functions, J. Math. Pures Appl., 84, 1716-1743 (2005) · Zbl 1159.35310 · doi:10.1016/j.matpur.2005.08.003
[23] Oleinik, O. A.; Shameaev, A. S.; Yosifian, G. A., Mathematical problems in elestricty and homogenization (1992), Amesterdam: North-Holland, Amesterdam · Zbl 0768.73003
[24] Pastukhova, S. E., The Neumann problem for elliptic equations with multiscale coefficients:operator estimates for homogenization, SB. Math., 207, 418-443 (2016) · Zbl 1350.35018 · doi:10.1070/SM8486
[25] Stein, E. M., Singular integrals and differentiability properties of functions (1970), New Jersey: Princeton University, New Jersey · Zbl 0207.13501
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.