×

New invariants for incidence structures. (English) Zbl 1269.51003

Summary: We exhibit a new, surprisingly tight, connection between incidence structures, linear codes, and Galois geometry. To this end, we introduce new invariants for finite simple incidence structures \(\mathcal D\), which admit both an algebraic and a geometric description. More precisely, we will associate one invariant for the isomorphism class of \(\mathcal D\) with each prime power \(q\). On the one hand, we consider incidence matrices \(M\) with entries from \(\mathrm{GF}(q^t)\) for the complementary incidence structure \(\mathcal D^\ast\), where \(t\) may be any positive integer, the associated codes \(C=C(M)\) spanned by \(M\) over \(\mathrm{GF}(q^t)\), and the corresponding trace codes \(\operatorname{Tr}(C(M))\) over \(\mathrm{GF}(q)\). The new invariant, namely the \(q\)-dimension \(\dim_q(\mathcal D^\ast)\) of \(\mathcal D^\ast\), is defined to be the smallest dimension over all trace codes which may be obtained in this manner. This modifies and generalizes the \(q\)-dimension of a design as introduced in [V. D. Tonchev, Des. Codes Cryptography 17, No.1–3, 121–128 (1999; Zbl 0940.05009)]. On the other hand, we consider embeddings of \(\mathcal D\) into projective geometries \(\Pi=\mathrm{PG}(n,q)\), where an embedding means identifying the points of \(\mathcal D\) with a point set \(V\) in \(\Pi\) in such a way that every block of \(\mathcal D\) is induced as the intersection of \(V\) with a suitable subspace of \(\Pi\). Our main result shows that the \(q\)-dimension of \(\mathcal D^\ast\) always coincides with the smallest value of \(N\) for which \(\mathcal D\) may be embedded into the \((N-1)\)-dimensional projective geometry \(\mathrm{PG}(N-1,q)\). We also give a necessary and sufficient condition when actually an embedding into the affine geometry \(\mathrm{AG}(N-1,q)\) is possible. Several examples and applications will be discussed: designs with classical parameters, some Steiner designs, and some configurations.

MSC:

51E20 Combinatorial structures in finite projective spaces
51A45 Incidence structures embeddable into projective geometries
94B27 Geometric methods (including applications of algebraic geometry) applied to coding theory
05B05 Combinatorial aspects of block designs

Citations:

Zbl 0940.05009
Full Text: DOI

References:

[1] Abdul-Elah M.S., Al-Dhahir M.W., Jungnickel D.: 83 in PG(2, q). Arch. Math. 49, 141-150 (1987) · Zbl 0595.51003 · doi:10.1007/BF01200478
[2] Beth T., Jungnickel D., Lenz H.: Design Theory, 2nd edn. Cambridge University Press, Cambridge (1999) · Zbl 0945.05004 · doi:10.1017/CBO9780511549533
[3] Beutelspacher A., Rosenbaum U.: Projective Geometry, 2nd edn. Cambridge University Press, Cambridge (2004) · Zbl 1050.51001
[4] Bierbrauer J.: Introduction to Coding Theory. CRC, Boca Raton (2005) · Zbl 1060.94001
[5] Calderbank R., Kantor W.M.: The geometry of two-weight codes. Bull. Lond. Math. Soc. 18, 97-122 (1986) · Zbl 0582.94019 · doi:10.1112/blms/18.2.97
[6] Clark D., Jungnickel D., Tonchev V.D.: Affine geometry designs, polarities, and Hamada’s conjecture. J. Comb. Theory A. 118, 231-239 (2011a) · Zbl 1292.05055 · doi:10.1016/j.jcta.2010.06.007
[7] Clark D., Jungnickel D., Tonchev V.D.: Correction to: “Exponential bounds on the number of designs with affine parameters”. J. Comb. Des. 19, 156-166 (2011b) · Zbl 1226.05073 · doi:10.1002/jcd.20276
[8] Colbourn C.J., Dinitz J.H.: Handbook of Combinatorial Designs, 2nd edn. CRC Press, Boca Raton (2007) · Zbl 1101.05001
[9] Coxeter H.S.M.: Twelve points in PG(5, 3) with 95040 self-transformations. Philos. Trans. R. Soc. Lond. A. 247, 279-293 (1958) · Zbl 0082.36207
[10] Delsarte P.: Weights of linear codes and strongly regular normed spaces. Discret. Math. 3, 47-64 (1972) · Zbl 0245.94010 · doi:10.1016/0012-365X(72)90024-6
[11] Dembowski P.: Finite Geometries. Springer, Berlin (1968) · Zbl 0159.50001 · doi:10.1007/978-3-642-62012-6
[12] Doyen J., Hubaut X., Vandensavel M.: Ranks of incidence matrices of Steiner triple systems. Math. Z. 163, 251-259 (1978) · Zbl 0373.05011 · doi:10.1007/BF01174898
[13] Ghinelli D., Jungnickel D., Metsch K.: Remarks on polarity designs (Submitted). · Zbl 1296.51011
[14] Giorgetti M., Previtali A.: Galois invariance, trace codes and subfield subcodes. Finite Fields Appl. 16, 96-99 (2010) · Zbl 1191.94130 · doi:10.1016/j.ffa.2010.01.002
[15] Goethals J.M., Delsarte P.: On a class of majority-logic decodable cyclic codes. IEEE Trans. Inf. Theory 14, 182-188 (1968) · Zbl 0193.48402 · doi:10.1109/TIT.1968.1054126
[16] Grünbaum B.: Configurations of points and lines. Graduate Studies in Mathematics 103. American Mathematical Society, Providence (2009). · Zbl 0193.48402
[17] Hamada N.: On the p-rank of the incidence matrix of a balanced or partially balanced incomplete block design and its application to error correcting codes. Hiroshima Math. J. 3, 154-226 (1973) · Zbl 0271.62104
[18] Hamada N., Ohmori H.: On the BIB-design having the minimum p-rank. J. Comb. Theory A. 18, 131-140 (1975) · Zbl 0308.05012 · doi:10.1016/0097-3165(75)90001-1
[19] Harada M., Lam C.W.H., Tonchev V.D.: Symmetric (4,4)-nets and generalized Hadamard matrices over groups of order 4. Des. Codes Cryptogr. 34, 71-87 (2005) · Zbl 1055.05019 · doi:10.1007/s10623-003-4195-y
[20] Hirschfeld J.W.P.H.: Projective spaces of square size. Simon Stevin 65, 319-329 (1991) · Zbl 0753.51004
[21] Jungnickel D.: Recent results on designs with classical parameters. J. Geom. 101, 137-155 (2011) · Zbl 1242.51003 · doi:10.1007/s00022-011-0086-y
[22] Jungnickel D., Tonchev V.D.: Polarities, quasi-symmetric designs, and Hamada’s conjecture. Des. Codes Cryptogr. 51, 131-140 (2009) · Zbl 1247.05032 · doi:10.1007/s10623-008-9249-8
[23] Jungnickel D., Tonchev V.D.: The number of designs with geometric parameters grows exponentially. Des. Codes Cryptogr. 55, 131-140 (2010) · Zbl 1215.05018 · doi:10.1007/s10623-009-9299-6
[24] Jungnickel D., Tonchev V.D.: A Hamada type characterization of the classical geometric designs. Des. Codes Cryptogr. doi:10.1007/s10623-011-9580-3 (2011). · Zbl 1245.05008
[25] Jurrius R.: Weight enumeration of codes from finite spaces. Des. Codes Cryptogr. doi:10.1007/s10623-011-9557-2 (2011). · Zbl 0595.51003
[26] MacWilliams F.J., Sloane N.J.A.: The Theory of Error-Correcting Codes. North-Holland, Amsterdam (1977). · Zbl 0369.94008
[27] Rigby J.F.: Affine subplanes of finite projective planes. Can. J. Math. 17, 977-1009 (1965) · Zbl 0131.19201 · doi:10.4153/CJM-1965-093-1
[28] Tallini G.: On caps of kind s in a Galois r-dimensional space. Acta Arith. 7, 19-28 (1961) · Zbl 0098.34002
[29] Teirlinck L.: On projective and affine hyperplanes. J. Comb. Theory A. 28, 290-306 (1980) · Zbl 0444.05026 · doi:10.1016/0097-3165(80)90072-2
[30] Tonchev V.D.: Quasi-symmetric 2-(31, 7, 7)-designs and a revision of Hamada’s conjecture. J. Comb. Theory A. 42, 104-110 (1986) · Zbl 0647.05010 · doi:10.1016/0097-3165(86)90009-9
[31] Tonchev V.D.: Linear perfect codes and a characterization of the classical designs. Des. Codes Cryptogr. 17, 121-128 (1999) · Zbl 0940.05009 · doi:10.1023/A:1008314923487
[32] Tonchev V.D.: A note on MDS codes, n-arcs and complete designs. Des. Codes Cryptogr. 29, 247-250 (2003) · Zbl 1029.94034 · doi:10.1023/A:1024121012598
[33] Tonchev, V. D.; Crnković, D. (ed.); Tonchev, V. (ed.), Finite geometry, designs, codes, and Hamada’s conjecture, 437-448 (2011), Amsterdam · Zbl 1326.05020
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.